说我有n个元素的列表,我知道有n个!订购这些元素的可能方法。生成此列表所有可能排序的算法是什么?例如,我有列表[a,b,c]。该算法将返回[[a,b,c],[a,c,b,],[b,a,c],[b,c,a],[c,a,b],[c,b , 一个]]。
我在这里阅读 http://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations
但是维基百科从来都不擅长于解释。我不太了解。
说我有n个元素的列表,我知道有n个!订购这些元素的可能方法。生成此列表所有可能排序的算法是什么?例如,我有列表[a,b,c]。该算法将返回[[a,b,c],[a,c,b,],[b,a,c],[b,c,a],[c,a,b],[c,b , 一个]]。
我在这里阅读 http://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations
但是维基百科从来都不擅长于解释。我不太了解。
Answers:
基本上,对于从左到右的每个项目,都会生成其余项目的所有排列(每个项目都与当前元素相加)。可以递归执行此操作(如果您喜欢痛苦,也可以迭代执行),直到到达最后一个项目为止,此时只有一个可能的顺序。
因此,使用列表[1,2,3,4]生成了以1开头的所有排列,然后生成了以2开头的所有排列,然后是3然后是4。
这有效地减少了从发现四个项目的列表到三个项目的列表之一的问题。减少到2个然后是1个项目列表后,将找到所有这些项目。
实施例示出了使用3个色的球处理置换:
(从https://en.wikipedia.org/wiki/Permutation#/media/File:Permutations_RGB.svg - https://commons.wikimedia.org/wiki/File:Permutations_RGB。 svg)
这是Python中的一种算法,它在数组上就地工作:
def permute(xs, low=0):
if low + 1 >= len(xs):
yield xs
else:
for p in permute(xs, low + 1):
yield p
for i in range(low + 1, len(xs)):
xs[low], xs[i] = xs[i], xs[low]
for p in permute(xs, low + 1):
yield p
xs[low], xs[i] = xs[i], xs[low]
for p in permute([1, 2, 3, 4]):
print p
您可以在此处亲自尝试该代码:http : //repl.it/J9v
这里已经有很多好的解决方案,但是我想分享我自己解决这个问题的方式,并希望这对也想提出自己解决方案的人有所帮助。
在对问题进行了一些思考之后,我得出了以下两个结论:
L
大小列表,n
将从列表的L 1,L 2 ... L n个元素开始有相等数量的解。由于总共存在n!
size列表的置换n
,因此我们n! / n = (n-1)!
在每个组中得到置换。[a,b]
和[b,a]
。使用这两个简单的想法,我得出了以下算法:
permute array
if array is of size 2
return first and second element as new array
return second and first element as new array
else
for each element in array
new subarray = array with excluded element
return element + permute subarray
这是我在C#中实现的方法:
public IEnumerable<List<T>> Permutate<T>(List<T> input)
{
if (input.Count == 2) // this are permutations of array of size 2
{
yield return new List<T>(input);
yield return new List<T> {input[1], input[0]};
}
else
{
foreach(T elem in input) // going through array
{
var rlist = new List<T>(input); // creating subarray = array
rlist.Remove(elem); // removing element
foreach(List<T> retlist in Permutate(rlist))
{
retlist.Insert(0,elem); // inserting the element at pos 0
yield return retlist;
}
}
}
}
维基百科对“词典顺序”的回答对我来说似乎完全是菜谱式的。它引用了该算法的14世纪起源!
我刚刚用Wikipedia的Java语言编写了一个快速实现作为检查,这没有问题。但是,以您的Q为例,不是“列出所有排列”,而是“列出所有排列”,因此Wikipedia不会对您有太大帮助。您需要一种语言,可以在其中构建排列列表。并相信我,数十亿个清单通常不是用命令式语言处理的。您确实希望使用一种非严格的函数式编程语言,使列表成为最主要的对象,而又不会使机器接近宇宙的热死状态。
这很简单。使用标准的Haskell或任何现代FP语言:
-- perms of a list
perms :: [a] -> [ [a] ]
perms (a:as) = [bs ++ a:cs | perm <- perms as, (bs,cs) <- splits perm]
perms [] = [ [] ]
和
-- ways of splitting a list into two parts
splits :: [a] -> [ ([a],[a]) ]
splits [] = [ ([],[]) ]
splits (a:as) = ([],a:as) : [(a:bs,cs) | (bs,cs) <- splits as]
正如WhirlWind所说,您从头开始。
您将游标交换为每个剩余值,包括游标本身,这些都是新实例(在示例中使用了int[]
和array.clone()
)。
然后,对所有这些不同的列表进行排列,确保光标位于右侧。
如果没有其他剩余值(光标位于末尾),请打印列表。这是停止条件。
public void permutate(int[] list, int pointer) {
if (pointer == list.length) {
//stop-condition: print or process number
return;
}
for (int i = pointer; i < list.length; i++) {
int[] permutation = (int[])list.clone();.
permutation[pointer] = list[i];
permutation[i] = list[pointer];
permutate(permutation, pointer + 1);
}
}
递归总是需要一些精神上的努力来维持。对于大数,阶乘很容易变得巨大,并且堆栈溢出很容易成为问题。
对于较小的数字(最常见的3或4),多个循环非常简单直接。不幸的是,循环没有得到投票。
让我们从枚举(而不是排列)开始。只需将代码读取为伪Perl代码即可。
$foreach $i1 in @list
$foreach $i2 in @list
$foreach $i3 in @list
print "$i1, $i2, $i3\n"
枚举比排列更常见,但是如果需要排列,只需添加条件:
$foreach $i1 in @list
$foreach $i2 in @list
$if $i2==$i1
next
$foreach $i3 in @list
$if $i3==$i1 or $i3==$i2
next
print "$i1, $i2, $i3\n"
现在,如果您确实需要大型列表的通用方法,则可以使用基数方法。首先,考虑枚举问题:
$n=@list
my @radix
$for $i=0:$n
$radix[$i]=0
$while 1
my @temp
$for $i=0:$n
push @temp, $list[$radix[$i]]
print join(", ", @temp), "\n"
$call radix_increment
subcode: radix_increment
$i=0
$while 1
$radix[$i]++
$if $radix[$i]==$n
$radix[$i]=0
$i++
$else
last
$if $i>=$n
last
基数增量本质上是数字计数(以列表元素的数量为基础)。
现在,如果您需要置换,只需在循环内添加检查:
subcode: check_permutation
my @check
my $flag_dup=0
$for $i=0:$n
$check[$radix[$i]]++
$if $check[$radix[$i]]>1
$flag_dup=1
last
$if $flag_dup
next
编辑:上面的代码应该工作,但对于置换,radix_increment可能是浪费的。因此,如果实际需要时间,我们必须将radix_increment更改为permute_inc:
subcode: permute_init
$for $i=0:$n
$radix[$i]=$i
subcode: permute_inc
$max=-1
$for $i=$n:0
$if $max<$radix[$i]
$max=$radix[$i]
$else
$for $j=$n:0
$if $radix[$j]>$radix[$i]
$call swap, $radix[$i], $radix[$j]
break
$j=$i+1
$k=$n-1
$while $j<$k
$call swap, $radix[$j], $radix[$k]
$j++
$k--
break
$if $i<0
break
当然,现在这些代码在逻辑上更加复杂,我将留给读者练习。
// C program to print all permutations with duplicates allowed
#include <stdio.h>
#include <string.h>
/* Function to swap values at two pointers */
void swap(char *x, char *y)
{
char temp;
temp = *x;
*x = *y;
*y = temp;
}
/* Function to print permutations of string
This function takes three parameters:
1. String
2. Starting index of the string
3. Ending index of the string. */
void permute(char *a, int l, int r)
{
int i;
if (l == r)
printf("%s\n", a);
else
{
for (i = l; i <= r; i++)
{
swap((a+l), (a+i));
permute(a, l+1, r);
swap((a+l), (a+i)); //backtrack
}
}
}
/* Driver program to test above functions */
int main()
{
char str[] = "ABC";
int n = strlen(str);
permute(str, 0, n-1);
return 0;
}
如果有人想知道如何在javascript中进行排列。
想法/伪代码
例如。'a'+ permute(bc)。BC的置换是BC&CB。现在将这两个加起来将得到abc,acb。同样,选择b +置换(ac)将提供bac,bca ...并继续进行。
现在看代码
function permutations(arr){
var len = arr.length,
perms = [],
rest,
picked,
restPerms,
next;
//for one or less item there is only one permutation
if (len <= 1)
return [arr];
for (var i=0; i<len; i++)
{
//copy original array to avoid changing it while picking elements
rest = Object.create(arr);
//splice removed element change array original array(copied array)
//[1,2,3,4].splice(2,1) will return [3] and remaining array = [1,2,4]
picked = rest.splice(i, 1);
//get the permutation of the rest of the elements
restPerms = permutations(rest);
// Now concat like a+permute(bc) for each
for (var j=0; j<restPerms.length; j++)
{
next = picked.concat(restPerms[j]);
perms.push(next);
}
}
return perms;
}
花些时间来理解这一点。我从(JavaScript中的扰动)获得了这段代码
Python中的另一个,它不是@cdiggins的,但我认为它更容易理解
def permute(num):
if len(num) == 2:
# get the permutations of the last 2 numbers by swapping them
yield num
num[0], num[1] = num[1], num[0]
yield num
else:
for i in range(0, len(num)):
# fix the first number and get the permutations of the rest of numbers
for perm in permute(num[0:i] + num[i+1:len(num)]):
yield [num[i]] + perm
for p in permute([1, 2, 3, 4]):
print p
我正在考虑编写代码以获取任何给定整数的任意大小的排列,即,提供一个数字4567,我们将获得所有可能的排列,直到7654 ...所以我对其进行了研究,找到了一种算法,并最终实现了它,在这里是用“ c”编写的代码。您可以简单地将其复制并在任何开源编译器上运行。但是有些缺陷正在等待调试。请欣赏。
码:
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
//PROTOTYPES
int fact(int); //For finding the factorial
void swap(int*,int*); //Swapping 2 given numbers
void sort(int*,int); //Sorting the list from the specified path
int imax(int*,int,int); //Finding the value of imax
int jsmall(int*,int); //Gives position of element greater than ith but smaller than rest (ahead of imax)
void perm(); //All the important tasks are done in this function
int n; //Global variable for input OR number of digits
void main()
{
int c=0;
printf("Enter the number : ");
scanf("%d",&c);
perm(c);
getch();
}
void perm(int c){
int *p; //Pointer for allocating separate memory to every single entered digit like arrays
int i, d;
int sum=0;
int j, k;
long f;
n = 0;
while(c != 0) //this one is for calculating the number of digits in the entered number
{
sum = (sum * 10) + (c % 10);
n++; //as i told at the start of loop
c = c / 10;
}
f = fact(n); //It gives the factorial value of any number
p = (int*) malloc(n*sizeof(int)); //Dynamically allocation of array of n elements
for(i=0; sum != 0 ; i++)
{
*(p+i) = sum % 10; //Giving values in dynamic array like 1234....n separately
sum = sum / 10;
}
sort(p,-1); //For sorting the dynamic array "p"
for(c=0 ; c<f/2 ; c++) { //Most important loop which prints 2 numbers per loop, so it goes upto 1/2 of fact(n)
for(k=0 ; k<n ; k++)
printf("%d",p[k]); //Loop for printing one of permutations
printf("\n");
i = d = 0;
i = imax(p,i,d); //provides the max i as per algo (i am restricted to this only)
j = i;
j = jsmall(p,j); //provides smallest i val as per algo
swap(&p[i],&p[j]);
for(k=0 ; k<n ; k++)
printf("%d",p[k]);
printf("\n");
i = d = 0;
i = imax(p,i,d);
j = i;
j = jsmall(p,j);
swap(&p[i],&p[j]);
sort(p,i);
}
free(p); //Deallocating memory
}
int fact (int a)
{
long f=1;
while(a!=0)
{
f = f*a;
a--;
}
return f;
}
void swap(int *p1,int *p2)
{
int temp;
temp = *p1;
*p1 = *p2;
*p2 = temp;
return;
}
void sort(int*p,int t)
{
int i,temp,j;
for(i=t+1 ; i<n-1 ; i++)
{
for(j=i+1 ; j<n ; j++)
{
if(*(p+i) > *(p+j))
{
temp = *(p+i);
*(p+i) = *(p+j);
*(p+j) = temp;
}
}
}
}
int imax(int *p, int i , int d)
{
while(i<n-1 && d<n-1)
{
if(*(p+d) < *(p+d+1))
{
i = d;
d++;
}
else
d++;
}
return i;
}
int jsmall(int *p, int j)
{
int i,small = 32767,k = j;
for (i=j+1 ; i<n ; i++)
{
if (p[i]<small && p[i]>p[k])
{
small = p[i];
j = i;
}
}
return j;
}
void permutate(char[] x, int i, int n){
x=x.clone();
if (i==n){
System.out.print(x);
System.out.print(" ");
counter++;}
else
{
for (int j=i; j<=n;j++){
// System.out.print(temp); System.out.print(" "); //Debugger
swap (x,i,j);
// System.out.print(temp); System.out.print(" "+"i="+i+" j="+j+"\n");// Debugger
permutate(x,i+1,n);
// swap (temp,i,j);
}
}
}
void swap (char[] x, int a, int b){
char temp = x[a];
x[a]=x[b];
x[b]=temp;
}
我创建了这个。基于研究太排列(qwe,0,qwe.length-1); 请注意,无论是否有回溯,都可以做到
这是一个玩具Ruby方法,这种方法#permutation.to_a
对于疯狂的人可能更容易理解。实在太慢了,但也有5行。
def permute(ary)
return [ary] if ary.size <= 1
ary.collect_concat.with_index do |e, i|
rest = ary.dup.tap {|a| a.delete_at(i) }
permute(rest).collect {|a| a.unshift(e) }
end
end
我已经在ANSI C中编写了此递归解决方案。Permutate函数的每次执行都会提供一个不同的排列,直到全部完成为止。全局变量也可以用于变量事实和计数。
#include <stdio.h>
#define SIZE 4
void Rotate(int vec[], int size)
{
int i, j, first;
first = vec[0];
for(j = 0, i = 1; i < size; i++, j++)
{
vec[j] = vec[i];
}
vec[j] = first;
}
int Permutate(int *start, int size, int *count)
{
static int fact;
if(size > 1)
{
if(Permutate(start + 1, size - 1, count))
{
Rotate(start, size);
}
fact *= size;
}
else
{
(*count)++;
fact = 1;
}
return !(*count % fact);
}
void Show(int vec[], int size)
{
int i;
printf("%d", vec[0]);
for(i = 1; i < size; i++)
{
printf(" %d", vec[i]);
}
putchar('\n');
}
int main()
{
int vec[] = { 1, 2, 3, 4, 5, 6 }; /* Only the first SIZE items will be permutated */
int count = 0;
do
{
Show(vec, SIZE);
} while(!Permutate(vec, SIZE, &count));
putchar('\n');
Show(vec, SIZE);
printf("\nCount: %d\n\n", count);
return 0;
}
Java版本
/**
* @param uniqueList
* @param permutationSize
* @param permutation
* @param only Only show the permutation of permutationSize,
* else show all permutation of less than or equal to permutationSize.
*/
public static void my_permutationOf(List<Integer> uniqueList, int permutationSize, List<Integer> permutation, boolean only) {
if (permutation == null) {
assert 0 < permutationSize && permutationSize <= uniqueList.size();
permutation = new ArrayList<>(permutationSize);
if (!only) {
System.out.println(Arrays.toString(permutation.toArray()));
}
}
for (int i : uniqueList) {
if (permutation.contains(i)) {
continue;
}
permutation.add(i);
if (!only) {
System.out.println(Arrays.toString(permutation.toArray()));
} else if (permutation.size() == permutationSize) {
System.out.println(Arrays.toString(permutation.toArray()));
}
if (permutation.size() < permutationSize) {
my_permutationOf(uniqueList, permutationSize, permutation, only);
}
permutation.remove(permutation.size() - 1);
}
}
例如
public static void main(String[] args) throws Exception {
my_permutationOf(new ArrayList<Integer>() {
{
add(1);
add(2);
add(3);
}
}, 3, null, true);
}
输出:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
在PHP中
$set=array('A','B','C','D');
function permutate($set) {
$b=array();
foreach($set as $key=>$value) {
if(count($set)==1) {
$b[]=$set[$key];
}
else {
$subset=$set;
unset($subset[$key]);
$x=permutate($subset);
foreach($x as $key1=>$value1) {
$b[]=$value.' '.$value1;
}
}
}
return $b;
}
$x=permutate($set);
var_export($x);
这是Python中用于打印列表的所有可能排列的代码:
def next_perm(arr):
# Find non-increasing suffix
i = len(arr) - 1
while i > 0 and arr[i - 1] >= arr[i]:
i -= 1
if i <= 0:
return False
# Find successor to pivot
j = len(arr) - 1
while arr[j] <= arr[i - 1]:
j -= 1
arr[i - 1], arr[j] = arr[j], arr[i - 1]
# Reverse suffix
arr[i : ] = arr[len(arr) - 1 : i - 1 : -1]
print arr
return True
def all_perm(arr):
a = next_perm(arr)
while a:
a = next_perm(arr)
arr = raw_input()
arr.split(' ')
arr = map(int, arr)
arr.sort()
print arr
all_perm(arr)
我使用了字典顺序算法来获取所有可能的排列,但是递归算法更有效。您可以在此处找到递归算法的代码: Python递归排列
public class PermutationGenerator
{
private LinkedList<List<int>> _permutationsList;
public void FindPermutations(List<int> list, int permutationLength)
{
_permutationsList = new LinkedList<List<int>>();
foreach(var value in list)
{
CreatePermutations(value, permutationLength);
}
}
private void CreatePermutations(int value, int permutationLength)
{
var node = _permutationsList.First;
var last = _permutationsList.Last;
while (node != null)
{
if (node.Value.Count < permutationLength)
{
GeneratePermutations(node.Value, value, permutationLength);
}
if (node == last)
{
break;
}
node = node.Next;
}
List<int> permutation = new List<int>();
permutation.Add(value);
_permutationsList.AddLast(permutation);
}
private void GeneratePermutations(List<int> permutation, int value, int permutationLength)
{
if (permutation.Count < permutationLength)
{
List<int> copyOfInitialPermutation = new List<int>(permutation);
copyOfInitialPermutation.Add(value);
_permutationsList.AddLast(copyOfInitialPermutation);
List<int> copyOfPermutation = new List<int>();
copyOfPermutation.AddRange(copyOfInitialPermutation);
int lastIndex = copyOfInitialPermutation.Count - 1;
for (int i = lastIndex;i > 0;i--)
{
int temp = copyOfPermutation[i - 1];
copyOfPermutation[i - 1] = copyOfPermutation[i];
copyOfPermutation[i] = temp;
List<int> perm = new List<int>();
perm.AddRange(copyOfPermutation);
_permutationsList.AddLast(perm);
}
}
}
public void PrintPermutations(int permutationLength)
{
int count = _permutationsList.Where(perm => perm.Count() == permutationLength).Count();
Console.WriteLine("The number of permutations is " + count);
}
}
在斯卡拉
def permutazione(n: List[Int]): List[List[Int]] = permutationeAcc(n, Nil)
def permutationeAcc(n: List[Int], acc: List[Int]): List[List[Int]] = {
var result: List[List[Int]] = Nil
for (i ← n if (!(acc contains (i))))
if (acc.size == n.size-1)
result = (i :: acc) :: result
else
result = result ::: permutationeAcc(n, i :: acc)
result
}
这是用于置换的Java版本
public class Permutation {
static void permute(String str) {
permute(str.toCharArray(), 0, str.length());
}
static void permute(char [] str, int low, int high) {
if (low == high) {
System.out.println(str);
return;
}
for (int i=low; i<high; i++) {
swap(str, i, low);
permute(str, low+1, high);
swap(str, low, i);
}
}
static void swap(char [] array, int i, int j) {
char t = array[i];
array[i] = array[j];
array[j] = t;
}
}
这是ColdFusion的实现(由于ArrayAppend()的merge参数,因此需要CF10):
public array function permutateArray(arr){
if (not isArray(arguments.arr) ) {
return ['The ARR argument passed to the permutateArray function is not of type array.'];
}
var len = arrayLen(arguments.arr);
var perms = [];
var rest = [];
var restPerms = [];
var rpLen = 0;
var next = [];
//for one or less item there is only one permutation
if (len <= 1) {
return arguments.arr;
}
for (var i=1; i <= len; i++) {
// copy the original array so as not to change it and then remove the picked (current) element
rest = arraySlice(arguments.arr, 1);
arrayDeleteAt(rest, i);
// recursively get the permutation of the rest of the elements
restPerms = permutateArray(rest);
rpLen = arrayLen(restPerms);
// Now concat each permutation to the current (picked) array, and append the concatenated array to the end result
for (var j=1; j <= rpLen; j++) {
// for each array returned, we need to make a fresh copy of the picked(current) element array so as to not change the original array
next = arraySlice(arguments.arr, i, 1);
arrayAppend(next, restPerms[j], true);
arrayAppend(perms, next);
}
}
return perms;
}
基于上面的KhanSharp的js解决方案。
我知道在今天的stackoverflow中这是一个非常古老的主题,甚至是题外话,但由于它在您的浏览器中运行的简单原因,我仍然想贡献一个友好的javascript答案。
我还添加了debugger
指令断点,因此您可以单步执行代码(要求使用Chrome)以查看该算法的工作原理。在Chrome中打开您的开发控制台(F12
在Windows或CMD + OPTION + I
Mac上),然后单击“运行代码段”。这实现了@WhirlWind在其答案中提出的相同算法。
您的浏览器应在debugger
指令处暂停执行。使用F8
继续执行代码。
function permute(rest, prefix = []) {
if (rest.length === 0) {
return [prefix];
}
return (rest
.map((x, index) => {
const oldRest = rest;
const oldPrefix = prefix;
// the `...` destructures the array into single values flattening it
const newRest = [...rest.slice(0, index), ...rest.slice(index + 1)];
const newPrefix = [...prefix, x];
debugger;
const result = permute(newRest, newPrefix);
return result;
})
// this step flattens the array of arrays returned by calling permute
.reduce((flattened, arr) => [...flattened, ...arr], [])
);
}
console.log(permute([1, 2, 3]));
在以下Java解决方案中,我们利用String是不可变的这一事实来避免在每次迭代时都克隆结果集。
输入将是一个字符串,例如“ abc”,而输出将是所有可能的排列:
abc
acb
bac
bca
cba
cab
public static void permute(String s) {
permute(s, 0);
}
private static void permute(String str, int left){
if(left == str.length()-1) {
System.out.println(str);
} else {
for(int i = left; i < str.length(); i++) {
String s = swap(str, left, i);
permute(s, left+1);
}
}
}
private static String swap(String s, int left, int right) {
if (left == right)
return s;
String result = s.substring(0, left);
result += s.substring(right, right+1);
result += s.substring(left+1, right);
result += s.substring(left, left+1);
result += s.substring(right+1);
return result;
}
可以将相同的方法应用于数组(而不是字符串):
public static void main(String[] args) {
int[] abc = {1,2,3};
permute(abc, 0);
}
public static void permute(int[] arr, int index) {
if (index == arr.length) {
System.out.println(Arrays.toString(arr));
} else {
for (int i = index; i < arr.length; i++) {
int[] permutation = arr.clone();
permutation[index] = arr[i];
permutation[i] = arr[index];
permute(permutation, index + 1);
}
}
}
这是我在Java上的解决方案:
public class CombinatorialUtils {
public static void main(String[] args) {
List<String> alphabet = new ArrayList<>();
alphabet.add("1");
alphabet.add("2");
alphabet.add("3");
alphabet.add("4");
for (List<String> strings : permutations(alphabet)) {
System.out.println(strings);
}
System.out.println("-----------");
for (List<String> strings : combinations(alphabet)) {
System.out.println(strings);
}
}
public static List<List<String>> combinations(List<String> alphabet) {
List<List<String>> permutations = permutations(alphabet);
List<List<String>> combinations = new ArrayList<>(permutations);
for (int i = alphabet.size(); i > 0; i--) {
final int n = i;
combinations.addAll(permutations.stream().map(strings -> strings.subList(0, n)).distinct().collect(Collectors.toList()));
}
return combinations;
}
public static <T> List<List<T>> permutations(List<T> alphabet) {
ArrayList<List<T>> permutations = new ArrayList<>();
if (alphabet.size() == 1) {
permutations.add(alphabet);
return permutations;
} else {
List<List<T>> subPerm = permutations(alphabet.subList(1, alphabet.size()));
T addedElem = alphabet.get(0);
for (int i = 0; i < alphabet.size(); i++) {
for (List<T> permutation : subPerm) {
int index = i;
permutations.add(new ArrayList<T>(permutation) {{
add(index, addedElem);
}});
}
}
}
return permutations;
}
}
如果不发布以倡导该思想的(一种)语言的实现,您就无法真正谈论解决递归问题。因此,为了完整起见,这是可以在Scheme中完成的方法之一。
(define (permof wd)
(cond ((null? wd) '())
((null? (cdr wd)) (list wd))
(else
(let splice ([l '()] [m (car wd)] [r (cdr wd)])
(append
(map (lambda (x) (cons m x)) (permof (append l r)))
(if (null? r)
'()
(splice (cons m l) (car r) (cdr r))))))))
打电话给(permof (list "foo" "bar" "baz"))
我们:
'(("foo" "bar" "baz")
("foo" "baz" "bar")
("bar" "foo" "baz")
("bar" "baz" "foo")
("baz" "bar" "foo")
("baz" "foo" "bar"))
我将不介绍算法细节,因为在其他帖子中已经对它进行了足够的解释。想法是一样的。
但是,在诸如Python,C和Java之类的破坏性介质中,递归问题往往很难建模和思考,而在Lisp或ML中则可以简洁地表达出来。
这是PHP中的递归解决方案。WhirlWind的帖子准确地描述了逻辑。值得一提的是,生成所有排列都是在阶乘时间内运行的,因此最好使用迭代方法。
public function permute($sofar, $input){
for($i=0; $i < strlen($input); $i++){
$diff = strDiff($input,$input[$i]);
$next = $sofar.$input[$i]; //next contains a permutation, save it
$this->permute($next, $diff);
}
}
strDiff函数采用两个字符串s1
和s2
,并返回一个新字符串,其中所有内容s1
均不包含元素s2
(重复很重要)。因此,strDiff('finish','i')
=> 'fnish'
(不删除第二个“ i” )。
这是R中的一种算法,以防万一有人需要避免像我一样加载其他库。
permutations <- function(n){
if(n==1){
return(matrix(1))
} else {
sp <- permutations(n-1)
p <- nrow(sp)
A <- matrix(nrow=n*p,ncol=n)
for(i in 1:n){
A[(i-1)*p+1:p,] <- cbind(i,sp+(sp>=i))
}
return(A)
}
}
用法示例:
> matrix(letters[permutations(3)],ncol=3)
[,1] [,2] [,3]
[1,] "a" "b" "c"
[2,] "a" "c" "b"
[3,] "b" "a" "c"
[4,] "b" "c" "a"
[5,] "c" "a" "b"
[6,] "c" "b" "a"
#!/usr/bin/env python
import time
def permutations(sequence):
# print sequence
unit = [1, 2, 1, 2, 1]
if len(sequence) >= 4:
for i in range(4, (len(sequence) + 1)):
unit = ((unit + [i - 1]) * i)[:-1]
# print unit
for j in unit:
temp = sequence[j]
sequence[j] = sequence[0]
sequence[0] = temp
yield sequence
else:
print 'You can use PEN and PAPER'
# s = [1,2,3,4,5,6,7,8,9,10]
s = [x for x in 'PYTHON']
print s
z = permutations(s)
try:
while True:
# time.sleep(0.0001)
print next(z)
except StopIteration:
print 'Done'
['P', 'Y', 'T', 'H', 'O', 'N']
['Y', 'P', 'T', 'H', 'O', 'N']
['T', 'P', 'Y', 'H', 'O', 'N']
['P', 'T', 'Y', 'H', 'O', 'N']
['Y', 'T', 'P', 'H', 'O', 'N']
['T', 'Y', 'P', 'H', 'O', 'N']
['H', 'Y', 'P', 'T', 'O', 'N']
['Y', 'H', 'P', 'T', 'O', 'N']
['P', 'H', 'Y', 'T', 'O', 'N']
['H', 'P', 'Y', 'T', 'O', 'N']
['Y', 'P', 'H', 'T', 'O', 'N']
['P', 'Y', 'H', 'T', 'O', 'N']
['T', 'Y', 'H', 'P', 'O', 'N']
['Y', 'T', 'H', 'P', 'O', 'N']
['H', 'T', 'Y', 'P', 'O', 'N']
['T', 'H', 'Y', 'P', 'O', 'N']
['Y', 'H', 'T', 'P', 'O', 'N']
['H', 'Y', 'T', 'P', 'O', 'N']
['P', 'Y', 'T', 'H', 'O', 'N']
.
.
.
['Y', 'T', 'N', 'H', 'O', 'P']
['N', 'T', 'Y', 'H', 'O', 'P']
['T', 'N', 'Y', 'H', 'O', 'P']
['Y', 'N', 'T', 'H', 'O', 'P']
['N', 'Y', 'T', 'H', 'O', 'P']
这是Java的递归代码,其想法是要有一个前缀来添加其余字符:
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str);
}
}
例:
输入=“ ABC”; 输出:
ABC ACB BAC BCA CAB CBA
str
递归调用中删除charAt(i),否则它不会终止。
这是C ++中的非递归解决方案,它以升序提供下一个排列,类似于std :: next_permutation提供的功能:
void permute_next(vector<int>& v)
{
if (v.size() < 2)
return;
if (v.size() == 2)
{
int tmp = v[0];
v[0] = v[1];
v[1] = tmp;
return;
}
// Step 1: find first ascending-ordered pair from right to left
int i = v.size()-2;
while(i>=0)
{
if (v[i] < v[i+1])
break;
i--;
}
if (i<0) // vector fully sorted in descending order (last permutation)
{
//resort in ascending order and return
sort(v.begin(), v.end());
return;
}
// Step 2: swap v[i] with next higher element of remaining elements
int pos = i+1;
int val = v[pos];
for(int k=i+2; k<v.size(); k++)
if(v[k] < val && v[k] > v[i])
{
pos = k;
val = v[k];
}
v[pos] = v[i];
v[i] = val;
// Step 3: sort remaining elements from i+1 ... end
sort(v.begin()+i+1, v.end());
}