如何遍历分组的熊猫数据框?


146

数据框:

  c_os_family_ss c_os_major_is l_customer_id_i
0      Windows 7                         90418
1      Windows 7                         90418
2      Windows 7                         90418

码:

print df
for name, group in df.groupby('l_customer_id_i').agg(lambda x: ','.join(x)):
    print name
    print group

我正在尝试仅遍历聚合数据,但出现错误:

ValueError:太多值无法解包

@EdChum,这是预期的输出:

                                                    c_os_family_ss  \
l_customer_id_i
131572           Windows 7,Windows 7,Windows 7,Windows 7,Window...
135467           Windows 7,Windows 7,Windows 7,Windows 7,Window...

                                                     c_os_major_is
l_customer_id_i
131572           ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,...
135467           ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,...

输出不是问题,我希望遍历每个组。

Answers:


224

df.groupby('l_customer_id_i').agg(lambda x: ','.join(x)) 确实已经返回了数据帧,因此您无法再遍历这些组。

一般来说:

  • df.groupby(...)返回一个GroupBy对象(DataFrameGroupBy或SeriesGroupBy),以及与此,您可以迭代通过组(如文档解释这里)。您可以执行以下操作:

    grouped = df.groupby('A')
    
    for name, group in grouped:
        ...
  • 当您应用在GROUPBY,在你的榜样的功能df.groupby(...).agg(...)(但是这也可以是transformapplymean,...),你结合的结果应用的功能,不同的群体集中在一个数据框(在适用和结合的步骤groupby的“ split-apply-combine”范式。因此,其结果将始终是DataFrame(或Series,具体取决于所应用的功能)。


50

这是一个迭代pd.DataFrame按列分组的示例atable。对于示例用例,将在for循环内生成SQL数据库的“创建”语句:

import pandas as pd

df1 = pd.DataFrame({
    'atable':     ['Users', 'Users', 'Domains', 'Domains', 'Locks'],
    'column':     ['col_1', 'col_2', 'col_a', 'col_b', 'col'],
    'column_type':['varchar', 'varchar', 'int', 'varchar', 'varchar'],
    'is_null':    ['No', 'No', 'Yes', 'No', 'Yes'],
})

df1_grouped = df1.groupby('atable')

# iterate over each group
for group_name, df_group in df1_grouped:
    print('\nCREATE TABLE {}('.format(group_name))

    for row_index, row in df_group.iterrows():
        col = row['column']
        column_type = row['column_type']
        is_null = 'NOT NULL' if row['is_null'] == 'NO' else ''
        print('\t{} {} {},'.format(col, column_type, is_null))

    print(");")

8
感谢您演示可以group使用来遍历个人for row, data in group.iterrows()
tatlar

16

如果已经创建了数据框,则可以遍历索引值。

df = df.groupby('l_customer_id_i').agg(lambda x: ','.join(x))
for name in df.index:
    print name
    print df.loc[name]
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.