熊猫将某些列转换为行


115

因此我的数据集具有n个日期的位置信息。问题在于每个日期实际上是一个不同的列标题。例如,CSV看起来像

location    name    Jan-2010    Feb-2010    March-2010
A           "test"  12          20          30
B           "foo"   18          20          25

我想要的是它看起来像

location    name    Date        Value
A           "test"  Jan-2010    12       
A           "test"  Feb-2010    20
A           "test"  March-2010  30
B           "foo"   Jan-2010    18       
B           "foo"   Feb-2010    20
B           "foo"   March-2010  25

问题是我不知道列中有多少个日期(尽管我知道它们总是以名字开头)


Answers:


207

UPDATE
从v0.20开始,它melt是一阶函数,您现在可以使用

df.melt(id_vars=["location", "name"], 
        var_name="Date", 
        value_name="Value")

  location    name        Date  Value
0        A  "test"    Jan-2010     12
1        B   "foo"    Jan-2010     18
2        A  "test"    Feb-2010     20
3        B   "foo"    Feb-2010     20
4        A  "test"  March-2010     30
5        B   "foo"  March-2010     25

旧版(ER):<0.20

您可以使用pd.melt来获取大部分信息,然后进行排序:

>>> df
  location  name  Jan-2010  Feb-2010  March-2010
0        A  test        12        20          30
1        B   foo        18        20          25
>>> df2 = pd.melt(df, id_vars=["location", "name"], 
                  var_name="Date", value_name="Value")
>>> df2
  location  name        Date  Value
0        A  test    Jan-2010     12
1        B   foo    Jan-2010     18
2        A  test    Feb-2010     20
3        B   foo    Feb-2010     20
4        A  test  March-2010     30
5        B   foo  March-2010     25
>>> df2 = df2.sort(["location", "name"])
>>> df2
  location  name        Date  Value
0        A  test    Jan-2010     12
2        A  test    Feb-2010     20
4        A  test  March-2010     30
1        B   foo    Jan-2010     18
3        B   foo    Feb-2010     20
5        B   foo  March-2010     25

(可能想输入.reset_index(drop=True),只是为了保持输出清洁。)

pd.DataFrame.sort 已弃用赞成pd.DataFrame.sort_values


@DSM将与此函数相反。例如,如何将df2[back] 转换为df
3kstc,

1
@ 3kstc 在这里这里尝试。您想研究枢轴。可能的pandas.pivot_table(df2,values='Value',index=['location','name'],columns='Date').reset_index()
Teepeemm,

1
@DSM有什么方法可以倒退吗?这意味着我有很多同名行,并且我希望所有日期都在不同的列上
Adrian

17

使用set_indexstackMultiIndex Series,然后DataFramereset_indexrename

df1 = (df.set_index(["location", "name"])
         .stack()
         .reset_index(name='Value')
         .rename(columns={'level_2':'Date'}))
print (df1)
  location  name        Date  Value
0        A  test    Jan-2010     12
1        A  test    Feb-2010     20
2        A  test  March-2010     30
3        B   foo    Jan-2010     18
4        B   foo    Feb-2010     20
5        B   foo  March-2010     25

5

我想我找到了一个更简单的解决方案

temp1 = pd.melt(df1, id_vars=["location"], var_name='Date', value_name='Value')
temp2 = pd.melt(df1, id_vars=["name"], var_name='Date', value_name='Value')

Concat temp1temp2的专栏name

temp1['new_column'] = temp2['name']

现在,您有了所需的东西。


4

pd.wide_to_long

您可以在年份列中添加前缀,然后直接输入pd.wide_to_long。我不会假装这是有效的,但是在某些情况下,它可能比方便pd.melt,例如,当您的列已经具有适当的前缀时。

df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))

res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
        .sort_values(['location', 'name'])

print(res)

   name        Date location  Value
0  test    Jan-2010        A     12
2  test    Feb-2010        A     20
4  test  March-2010        A     30
1   foo    Jan-2010        B     18
3   foo    Feb-2010        B     20
5   foo  March-2010        B     25
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.