我有一个CSV文件,我想使用Python将该文件批量导入到我的sqlite3数据库中。该命令是“ .import .....”。但似乎不能这样工作。谁能给我一个在sqlite3中如何做的例子?我正在使用Windows,以防万一。谢谢
我有一个CSV文件,我想使用Python将该文件批量导入到我的sqlite3数据库中。该命令是“ .import .....”。但似乎不能这样工作。谁能给我一个在sqlite3中如何做的例子?我正在使用Windows,以防万一。谢谢
Answers:
import csv, sqlite3
con = sqlite3.connect(":memory:") # change to 'sqlite:///your_filename.db'
cur = con.cursor()
cur.execute("CREATE TABLE t (col1, col2);") # use your column names here
with open('data.csv','r') as fin: # `with` statement available in 2.5+
# csv.DictReader uses first line in file for column headings by default
dr = csv.DictReader(fin) # comma is default delimiter
to_db = [(i['col1'], i['col2']) for i in dr]
cur.executemany("INSERT INTO t (col1, col2) VALUES (?, ?);", to_db)
con.commit()
con.close()
not all arguments converted during string formatting
当我尝试这种方法时,我会不断得到帮助。
留给读者一个创建与磁盘上文件的sqlite连接的练习...但是熊猫库现在提供了两种方法
df = pandas.read_csv(csvfile)
df.to_sql(table_name, conn, if_exists='append', index=False)
df
因此我将您的示例简化为:pandas.read_csv(csvfile).to_sql(table_name, conn, if_exists='append', index=False)
我的2美分(更通用):
import csv, sqlite3
import logging
def _get_col_datatypes(fin):
dr = csv.DictReader(fin) # comma is default delimiter
fieldTypes = {}
for entry in dr:
feildslLeft = [f for f in dr.fieldnames if f not in fieldTypes.keys()]
if not feildslLeft: break # We're done
for field in feildslLeft:
data = entry[field]
# Need data to decide
if len(data) == 0:
continue
if data.isdigit():
fieldTypes[field] = "INTEGER"
else:
fieldTypes[field] = "TEXT"
# TODO: Currently there's no support for DATE in sqllite
if len(feildslLeft) > 0:
raise Exception("Failed to find all the columns data types - Maybe some are empty?")
return fieldTypes
def escapingGenerator(f):
for line in f:
yield line.encode("ascii", "xmlcharrefreplace").decode("ascii")
def csvToDb(csvFile, outputToFile = False):
# TODO: implement output to file
with open(csvFile,mode='r', encoding="ISO-8859-1") as fin:
dt = _get_col_datatypes(fin)
fin.seek(0)
reader = csv.DictReader(fin)
# Keep the order of the columns name just as in the CSV
fields = reader.fieldnames
cols = []
# Set field and type
for f in fields:
cols.append("%s %s" % (f, dt[f]))
# Generate create table statement:
stmt = "CREATE TABLE ads (%s)" % ",".join(cols)
con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute(stmt)
fin.seek(0)
reader = csv.reader(escapingGenerator(fin))
# Generate insert statement:
stmt = "INSERT INTO ads VALUES(%s);" % ','.join('?' * len(cols))
cur.executemany(stmt, reader)
con.commit()
return con
该.import
命令是sqlite3命令行工具的功能。要在Python中完成此操作,您应该简单地使用Python具备的任何功能(例如csv模块)加载数据,然后照常插入数据。
这样,您还可以控制要插入的类型,而不必依赖sqlite3似乎没有记录的行为。
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sys, csv, sqlite3
def main():
con = sqlite3.connect(sys.argv[1]) # database file input
cur = con.cursor()
cur.executescript("""
DROP TABLE IF EXISTS t;
CREATE TABLE t (COL1 TEXT, COL2 TEXT);
""") # checks to see if table exists and makes a fresh table.
with open(sys.argv[2], "rb") as f: # CSV file input
reader = csv.reader(f, delimiter=',') # no header information with delimiter
for row in reader:
to_db = [unicode(row[0], "utf8"), unicode(row[1], "utf8")] # Appends data from CSV file representing and handling of text
cur.execute("INSERT INTO neto (COL1, COL2) VALUES(?, ?);", to_db)
con.commit()
con.close() # closes connection to database
if __name__=='__main__':
main()
非常感谢bernie的回答!必须进行一些调整-这对我有用:
import csv, sqlite3
conn = sqlite3.connect("pcfc.sl3")
curs = conn.cursor()
curs.execute("CREATE TABLE PCFC (id INTEGER PRIMARY KEY, type INTEGER, term TEXT, definition TEXT);")
reader = csv.reader(open('PC.txt', 'r'), delimiter='|')
for row in reader:
to_db = [unicode(row[0], "utf8"), unicode(row[1], "utf8"), unicode(row[2], "utf8")]
curs.execute("INSERT INTO PCFC (type, term, definition) VALUES (?, ?, ?);", to_db)
conn.commit()
我的文本文件(PC.txt)如下所示:
1 | Term 1 | Definition 1
2 | Term 2 | Definition 2
3 | Term 3 | Definition 3
没错,这.import
是正确的方法,但这是来自SQLite3.exe Shell的命令。这个问题的很多顶级答案都涉及本机python循环,但如果文件很大(我的记录是10 ^ 6到10 ^ 7记录),则要避免将所有内容读入熊猫或使用本机python列表理解/循环(尽管我没有时间比较它们)。
对于大文件,我认为最好的选择是使用预先创建空表,sqlite3.execute("CREATE TABLE...")
从CSV文件中删除标题,然后用于subprocess.run()
执行sqlite的import语句。由于我相信最后一部分是最相关的,所以我将从这一点开始。
subprocess.run()
from pathlib import Path
db_name = Path('my.db').resolve()
csv_file = Path('file.csv').resolve()
result = subprocess.run(['sqlite3',
str(db_name),
'-cmd',
'.mode csv',
'.import '+str(csv_file).replace('\\','\\\\')
+' <table_name>'],
capture_output=True)
解释
在命令行中,您要查找的命令是sqlite3 my.db -cmd ".mode csv" ".import file.csv table"
。 subprocess.run()
运行命令行过程。to的参数subprocess.run()
是一串字符串,这些字符串被解释为命令,后跟所有参数。
sqlite3 my.db
打开数据库 -cmd
数据库允许您将多个跟进命令传递给sqlite程序后添加标志。在外壳中,每个命令都必须用引号引起来,但是在这里,它们只需要成为序列中自己的元素即可'.mode csv'
符合您的期望'.import '+str(csv_file).replace('\\','\\\\')+' <table_name>'
是导入命令。-cmd
引号的字符串,因此如果您有Windows目录路径,则需要将反斜杠加倍。这并不是问题的重点,但这是我所使用的。同样,我不想在任何时候将整个文件读入内存:
with open(csv, "r") as source:
source.readline()
with open(str(csv)+"_nohead", "w") as target:
shutil.copyfileobj(source, target)
基于Guy L解决方案(喜欢它),但可以处理转义的字段。
import csv, sqlite3
def _get_col_datatypes(fin):
dr = csv.DictReader(fin) # comma is default delimiter
fieldTypes = {}
for entry in dr:
feildslLeft = [f for f in dr.fieldnames if f not in fieldTypes.keys()]
if not feildslLeft: break # We're done
for field in feildslLeft:
data = entry[field]
# Need data to decide
if len(data) == 0:
continue
if data.isdigit():
fieldTypes[field] = "INTEGER"
else:
fieldTypes[field] = "TEXT"
# TODO: Currently there's no support for DATE in sqllite
if len(feildslLeft) > 0:
raise Exception("Failed to find all the columns data types - Maybe some are empty?")
return fieldTypes
def escapingGenerator(f):
for line in f:
yield line.encode("ascii", "xmlcharrefreplace").decode("ascii")
def csvToDb(csvFile,dbFile,tablename, outputToFile = False):
# TODO: implement output to file
with open(csvFile,mode='r', encoding="ISO-8859-1") as fin:
dt = _get_col_datatypes(fin)
fin.seek(0)
reader = csv.DictReader(fin)
# Keep the order of the columns name just as in the CSV
fields = reader.fieldnames
cols = []
# Set field and type
for f in fields:
cols.append("\"%s\" %s" % (f, dt[f]))
# Generate create table statement:
stmt = "create table if not exists \"" + tablename + "\" (%s)" % ",".join(cols)
print(stmt)
con = sqlite3.connect(dbFile)
cur = con.cursor()
cur.execute(stmt)
fin.seek(0)
reader = csv.reader(escapingGenerator(fin))
# Generate insert statement:
stmt = "INSERT INTO \"" + tablename + "\" VALUES(%s);" % ','.join('?' * len(cols))
cur.executemany(stmt, reader)
con.commit()
con.close()
为此,您可以使用blaze
和odo
有效
import blaze as bz
csv_path = 'data.csv'
bz.odo(csv_path, 'sqlite:///data.db::data')
Odo将csv文件存储到data.db
该模式下的(sqlite数据库)data
或者您odo
直接使用,而无需使用blaze
。两种方法都可以。阅读本文档
import csv, sqlite3
def _get_col_datatypes(fin):
dr = csv.DictReader(fin) # comma is default delimiter
fieldTypes = {}
for entry in dr:
feildslLeft = [f for f in dr.fieldnames if f not in fieldTypes.keys()]
if not feildslLeft: break # We're done
for field in feildslLeft:
data = entry[field]
# Need data to decide
if len(data) == 0:
continue
if data.isdigit():
fieldTypes[field] = "INTEGER"
else:
fieldTypes[field] = "TEXT"
# TODO: Currently there's no support for DATE in sqllite
if len(feildslLeft) > 0:
raise Exception("Failed to find all the columns data types - Maybe some are empty?")
return fieldTypes
def escapingGenerator(f):
for line in f:
yield line.encode("ascii", "xmlcharrefreplace").decode("ascii")
def csvToDb(csvFile,dbFile,tablename, outputToFile = False):
# TODO: implement output to file
with open(csvFile,mode='r', encoding="ISO-8859-1") as fin:
dt = _get_col_datatypes(fin)
fin.seek(0)
reader = csv.DictReader(fin)
# Keep the order of the columns name just as in the CSV
fields = reader.fieldnames
cols = []
# Set field and type
for f in fields:
cols.append("\"%s\" %s" % (f, dt[f]))
# Generate create table statement:
stmt = "create table if not exists \"" + tablename + "\" (%s)" % ",".join(cols)
print(stmt)
con = sqlite3.connect(dbFile)
cur = con.cursor()
cur.execute(stmt)
fin.seek(0)
reader = csv.reader(escapingGenerator(fin))
# Generate insert statement:
stmt = "INSERT INTO \"" + tablename + "\" VALUES(%s);" % ','.join('?' * len(cols))
cur.executemany(stmt, reader)
con.commit()
con.close()
为了简单起见,您可以使用项目的Makefile中的sqlite3命令行工具。
%.sql3: %.csv
rm -f $@
sqlite3 $@ -echo -cmd ".mode csv" ".import $< $*"
%.dump: %.sql3
sqlite3 $< "select * from $*"
make test.sql3
然后从现有的test.csv文件使用单个表“ test”创建sqlite数据库。然后make test.dump
,您可以验证内容。
我发现有必要分批从csv到数据库的数据传输,以免耗尽内存。可以这样完成:
import csv
import sqlite3
from operator import itemgetter
# Establish connection
conn = sqlite3.connect("mydb.db")
# Create the table
conn.execute(
"""
CREATE TABLE persons(
person_id INTEGER,
last_name TEXT,
first_name TEXT,
address TEXT
)
"""
)
# These are the columns from the csv that we want
cols = ["person_id", "last_name", "first_name", "address"]
# If the csv file is huge, we instead add the data in chunks
chunksize = 10000
# Parse csv file and populate db in chunks
with conn, open("persons.csv") as f:
reader = csv.DictReader(f)
chunk = []
for i, row in reader:
if i % chunksize == 0 and i > 0:
conn.executemany(
"""
INSERT INTO persons
VALUES(?, ?, ?, ?)
""", chunk
)
chunk = []
items = itemgetter(*cols)(row)
chunk.append(items)