我正在寻找从RGB到HSV的色彩空间转换器,特别是对于两个色彩空间的0到255范围。
Answers:
我已经使用了很长时间-现在不知道它们来自哪里...请注意,输入和输出(以度为单位的角度)在0到1.0的范围内。
注意:此代码不对输入进行真正的完整性检查。请谨慎操作!
typedef struct {
double r; // a fraction between 0 and 1
double g; // a fraction between 0 and 1
double b; // a fraction between 0 and 1
} rgb;
typedef struct {
double h; // angle in degrees
double s; // a fraction between 0 and 1
double v; // a fraction between 0 and 1
} hsv;
static hsv rgb2hsv(rgb in);
static rgb hsv2rgb(hsv in);
hsv rgb2hsv(rgb in)
{
hsv out;
double min, max, delta;
min = in.r < in.g ? in.r : in.g;
min = min < in.b ? min : in.b;
max = in.r > in.g ? in.r : in.g;
max = max > in.b ? max : in.b;
out.v = max; // v
delta = max - min;
if (delta < 0.00001)
{
out.s = 0;
out.h = 0; // undefined, maybe nan?
return out;
}
if( max > 0.0 ) { // NOTE: if Max is == 0, this divide would cause a crash
out.s = (delta / max); // s
} else {
// if max is 0, then r = g = b = 0
// s = 0, h is undefined
out.s = 0.0;
out.h = NAN; // its now undefined
return out;
}
if( in.r >= max ) // > is bogus, just keeps compilor happy
out.h = ( in.g - in.b ) / delta; // between yellow & magenta
else
if( in.g >= max )
out.h = 2.0 + ( in.b - in.r ) / delta; // between cyan & yellow
else
out.h = 4.0 + ( in.r - in.g ) / delta; // between magenta & cyan
out.h *= 60.0; // degrees
if( out.h < 0.0 )
out.h += 360.0;
return out;
}
rgb hsv2rgb(hsv in)
{
double hh, p, q, t, ff;
long i;
rgb out;
if(in.s <= 0.0) { // < is bogus, just shuts up warnings
out.r = in.v;
out.g = in.v;
out.b = in.v;
return out;
}
hh = in.h;
if(hh >= 360.0) hh = 0.0;
hh /= 60.0;
i = (long)hh;
ff = hh - i;
p = in.v * (1.0 - in.s);
q = in.v * (1.0 - (in.s * ff));
t = in.v * (1.0 - (in.s * (1.0 - ff)));
switch(i) {
case 0:
out.r = in.v;
out.g = t;
out.b = p;
break;
case 1:
out.r = q;
out.g = in.v;
out.b = p;
break;
case 2:
out.r = p;
out.g = in.v;
out.b = t;
break;
case 3:
out.r = p;
out.g = q;
out.b = in.v;
break;
case 4:
out.r = t;
out.g = p;
out.b = in.v;
break;
case 5:
default:
out.r = in.v;
out.g = p;
out.b = q;
break;
}
return out;
}
>=
与编译器错误是因为double == double
在大多数编译器无效和非法的。浮点算术和浮点存储意味着两个值在近似值上可以相等,但在存储上不相等,即使从公式上讲它们是相同的。abs(double_a - double_b) <= epsilon
通常,您应该在epsilon有价值的地方做1e-4
。
您也可以尝试不使用浮点数的以下代码(更快但更不准确):
typedef struct RgbColor
{
unsigned char r;
unsigned char g;
unsigned char b;
} RgbColor;
typedef struct HsvColor
{
unsigned char h;
unsigned char s;
unsigned char v;
} HsvColor;
RgbColor HsvToRgb(HsvColor hsv)
{
RgbColor rgb;
unsigned char region, remainder, p, q, t;
if (hsv.s == 0)
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
region = hsv.h / 43;
remainder = (hsv.h - (region * 43)) * 6;
p = (hsv.v * (255 - hsv.s)) >> 8;
q = (hsv.v * (255 - ((hsv.s * remainder) >> 8))) >> 8;
t = (hsv.v * (255 - ((hsv.s * (255 - remainder)) >> 8))) >> 8;
switch (region)
{
case 0:
rgb.r = hsv.v; rgb.g = t; rgb.b = p;
break;
case 1:
rgb.r = q; rgb.g = hsv.v; rgb.b = p;
break;
case 2:
rgb.r = p; rgb.g = hsv.v; rgb.b = t;
break;
case 3:
rgb.r = p; rgb.g = q; rgb.b = hsv.v;
break;
case 4:
rgb.r = t; rgb.g = p; rgb.b = hsv.v;
break;
default:
rgb.r = hsv.v; rgb.g = p; rgb.b = q;
break;
}
return rgb;
}
HsvColor RgbToHsv(RgbColor rgb)
{
HsvColor hsv;
unsigned char rgbMin, rgbMax;
rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);
rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);
hsv.v = rgbMax;
if (hsv.v == 0)
{
hsv.h = 0;
hsv.s = 0;
return hsv;
}
hsv.s = 255 * long(rgbMax - rgbMin) / hsv.v;
if (hsv.s == 0)
{
hsv.h = 0;
return hsv;
}
if (rgbMax == rgb.r)
hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);
else if (rgbMax == rgb.g)
hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);
else
hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);
return hsv;
}
请注意,此算法使用0-255
的范围0-360
是该问题的作者要求的范围(而不是)。
我在HLSL中为我们的渲染引擎编写了此代码,其中没有任何条件:
float3 HSV2RGB( float3 _HSV )
{
_HSV.x = fmod( 100.0 + _HSV.x, 1.0 ); // Ensure [0,1[
float HueSlice = 6.0 * _HSV.x; // In [0,6[
float HueSliceInteger = floor( HueSlice );
float HueSliceInterpolant = HueSlice - HueSliceInteger; // In [0,1[ for each hue slice
float3 TempRGB = float3( _HSV.z * (1.0 - _HSV.y),
_HSV.z * (1.0 - _HSV.y * HueSliceInterpolant),
_HSV.z * (1.0 - _HSV.y * (1.0 - HueSliceInterpolant)) );
// The idea here to avoid conditions is to notice that the conversion code can be rewritten:
// if ( var_i == 0 ) { R = V ; G = TempRGB.z ; B = TempRGB.x }
// else if ( var_i == 2 ) { R = TempRGB.x ; G = V ; B = TempRGB.z }
// else if ( var_i == 4 ) { R = TempRGB.z ; G = TempRGB.x ; B = V }
//
// else if ( var_i == 1 ) { R = TempRGB.y ; G = V ; B = TempRGB.x }
// else if ( var_i == 3 ) { R = TempRGB.x ; G = TempRGB.y ; B = V }
// else if ( var_i == 5 ) { R = V ; G = TempRGB.x ; B = TempRGB.y }
//
// This shows several things:
// . A separation between even and odd slices
// . If slices (0,2,4) and (1,3,5) can be rewritten as basically being slices (0,1,2) then
// the operation simply amounts to performing a "rotate right" on the RGB components
// . The base value to rotate is either (V, B, R) for even slices or (G, V, R) for odd slices
//
float IsOddSlice = fmod( HueSliceInteger, 2.0 ); // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)
float ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice); // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)
float3 ScrollingRGBForEvenSlices = float3( _HSV.z, TempRGB.zx ); // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)
float3 ScrollingRGBForOddSlices = float3( TempRGB.y, _HSV.z, TempRGB.x ); // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)
float3 ScrollingRGB = lerp( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );
float IsNotFirstSlice = saturate( ThreeSliceSelector ); // 1 if NOT the first slice (true for slices 1 and 2)
float IsNotSecondSlice = saturate( ThreeSliceSelector-1.0 ); // 1 if NOT the first or second slice (true only for slice 2)
return lerp( ScrollingRGB.xyz, lerp( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice ); // Make the RGB rotate right depending on final slice index
}
这是一个基于Agoston的计算机图形学和几何建模的C实现:实现和算法。304,具有ħ ∈[0,360]和小号,V ∈[0,1]。
#include <math.h>
typedef struct {
double r; // ∈ [0, 1]
double g; // ∈ [0, 1]
double b; // ∈ [0, 1]
} rgb;
typedef struct {
double h; // ∈ [0, 360]
double s; // ∈ [0, 1]
double v; // ∈ [0, 1]
} hsv;
rgb hsv2rgb(hsv HSV)
{
rgb RGB;
double H = HSV.h, S = HSV.s, V = HSV.v,
P, Q, T,
fract;
(H == 360.)?(H = 0.):(H /= 60.);
fract = H - floor(H);
P = V*(1. - S);
Q = V*(1. - S*fract);
T = V*(1. - S*(1. - fract));
if (0. <= H && H < 1.)
RGB = (rgb){.r = V, .g = T, .b = P};
else if (1. <= H && H < 2.)
RGB = (rgb){.r = Q, .g = V, .b = P};
else if (2. <= H && H < 3.)
RGB = (rgb){.r = P, .g = V, .b = T};
else if (3. <= H && H < 4.)
RGB = (rgb){.r = P, .g = Q, .b = V};
else if (4. <= H && H < 5.)
RGB = (rgb){.r = T, .g = P, .b = V};
else if (5. <= H && H < 6.)
RGB = (rgb){.r = V, .g = P, .b = Q};
else
RGB = (rgb){.r = 0., .g = 0., .b = 0.};
return RGB;
}
这应该在这里:仍然可以。与上述相比,它看起来不错。
hlsl代码
float3 Hue(float H)
{
half R = abs(H * 6 - 3) - 1;
half G = 2 - abs(H * 6 - 2);
half B = 2 - abs(H * 6 - 4);
return saturate(half3(R,G,B));
}
half4 HSVtoRGB(in half3 HSV)
{
return half4(((Hue(HSV.x) - 1) * HSV.y + 1) * HSV.z,1);
}
float3是16位精度的vector3数据类型,即float3 hue()返回数据类型(x,y,z),例如(r,g,b),一半与一半精度相同,即8bit,float4是(r, g,b,a)4个值。
half
,half4
,half3
,float3
,等等。
当您降低饱和度时,@ fins的答案在Arduio上存在溢出问题。此处将某些值转换为int以防止这种情况。
typedef struct RgbColor
{
unsigned char r;
unsigned char g;
unsigned char b;
} RgbColor;
typedef struct HsvColor
{
unsigned char h;
unsigned char s;
unsigned char v;
} HsvColor;
RgbColor HsvToRgb(HsvColor hsv)
{
RgbColor rgb;
unsigned char region, p, q, t;
unsigned int h, s, v, remainder;
if (hsv.s == 0)
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
// converting to 16 bit to prevent overflow
h = hsv.h;
s = hsv.s;
v = hsv.v;
region = h / 43;
remainder = (h - (region * 43)) * 6;
p = (v * (255 - s)) >> 8;
q = (v * (255 - ((s * remainder) >> 8))) >> 8;
t = (v * (255 - ((s * (255 - remainder)) >> 8))) >> 8;
switch (region)
{
case 0:
rgb.r = v;
rgb.g = t;
rgb.b = p;
break;
case 1:
rgb.r = q;
rgb.g = v;
rgb.b = p;
break;
case 2:
rgb.r = p;
rgb.g = v;
rgb.b = t;
break;
case 3:
rgb.r = p;
rgb.g = q;
rgb.b = v;
break;
case 4:
rgb.r = t;
rgb.g = p;
rgb.b = v;
break;
default:
rgb.r = v;
rgb.g = p;
rgb.b = q;
break;
}
return rgb;
}
HsvColor RgbToHsv(RgbColor rgb)
{
HsvColor hsv;
unsigned char rgbMin, rgbMax;
rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);
rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);
hsv.v = rgbMax;
if (hsv.v == 0)
{
hsv.h = 0;
hsv.s = 0;
return hsv;
}
hsv.s = 255 * ((long)(rgbMax - rgbMin)) / hsv.v;
if (hsv.s == 0)
{
hsv.h = 0;
return hsv;
}
if (rgbMax == rgb.r)
hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);
else if (rgbMax == rgb.g)
hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);
else
hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);
return hsv;
}
这不是C,但确实可以。我在这里看到的所有其他方法都是通过将所有内容都封装到六边形的各个部分中,并从中近似“角度”来工作的。通过使用余弦从另一个方程式开始,求解hs和v,可以在hsv和rgb之间建立更好的关系,并且补间变得更平滑(以变慢为代价)。
假设一切都是浮点数。如果rg和b从0到1,h从0到2pi,v从0到4/3,而s从0到2/3。
以下代码是用Lua编写的。它很容易翻译成其他任何东西。
local hsv do
hsv ={}
local atan2 =math.atan2
local cos =math.cos
local sin =math.sin
function hsv.fromrgb(r,b,g)
local c=r+g+b
if c<1e-4 then
return 0,2/3,0
else
local p=2*(b*b+g*g+r*r-g*r-b*g-b*r)^0.5
local h=atan2(b-g,(2*r-b-g)/3^0.5)
local s=p/(c+p)
local v=(c+p)/3
return h,s,v
end
end
function hsv.torgb(h,s,v)
local r=v*(1+s*(cos(h)-1))
local g=v*(1+s*(cos(h-2.09439)-1))
local b=v*(1+s*(cos(h+2.09439)-1))
return r,g,b
end
function hsv.tween(h0,s0,v0,h1,s1,v1,t)
local dh=(h1-h0+3.14159)%6.28318-3.14159
local h=h0+t*dh
local s=s0+t*(s1-s0)
local v=v0+t*(v1-v0)
return h,s,v
end
end
基于Patapoms的GLSL Shader版本答案:
vec3 HSV2RGB( vec3 hsv )
{
hsv.x = mod( 100.0 + hsv.x, 1.0 ); // Ensure [0,1[
float HueSlice = 6.0 * hsv.x; // In [0,6[
float HueSliceInteger = floor( HueSlice );
float HueSliceInterpolant = HueSlice - HueSliceInteger; // In [0,1[ for each hue slice
vec3 TempRGB = vec3( hsv.z * (1.0 - hsv.y), hsv.z * (1.0 - hsv.y * HueSliceInterpolant), hsv.z * (1.0 - hsv.y * (1.0 - HueSliceInterpolant)) );
float IsOddSlice = mod( HueSliceInteger, 2.0 ); // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)
float ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice); // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)
vec3 ScrollingRGBForEvenSlices = vec3( hsv.z, TempRGB.zx ); // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)
vec3 ScrollingRGBForOddSlices = vec3( TempRGB.y, hsv.z, TempRGB.x ); // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)
vec3 ScrollingRGB = mix( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );
float IsNotFirstSlice = clamp( ThreeSliceSelector, 0.0,1.0 ); // 1 if NOT the first slice (true for slices 1 and 2)
float IsNotSecondSlice = clamp( ThreeSliceSelector-1.0, 0.0,1. ); // 1 if NOT the first or second slice (true only for slice 2)
return mix( ScrollingRGB.xyz, mix( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice ); // Make the RGB rotate right depending on final slice index
}
我不是C ++开发人员,所以我将不提供代码。但是,我可以提供我目前发现的简单hsv2rgb 算法(此处为rgb2hsv)-我更新了Wiki,并添加了描述:HSV和HLS。主要改进是,我仔细观察了r,g,b作为色相函数,并引入了更简单的形状函数来描述它们(不失精确性)。算法 -输入时,我们有:h(0-255),s(0-255),v(0-255)
r = 255*f(5), g = 255*f(3), b = 255*f(1)
我们使用如下所述的函数f
f(n) = v/255 - (v/255)*(s/255)*max(min(k,4-k,1),0)
其中(mod可以返回小数部分; k是浮点数)
k = (n+h*360/(255*60)) mod 6;
min(k,4-k,1)
。为什么会有三个值,这里到底发生了什么?提前致谢!
这是我今天早上刚刚根据与上面几乎相同的数学写的:
/* math adapted from: http://www.rapidtables.com/convert/color/rgb-to-hsl.htm
* reasonably optimized for speed, without going crazy */
void rgb_to_hsv (int r, int g, int b, float *r_h, float *r_s, float *r_v) {
float rp, gp, bp, cmax, cmin, delta, l;
int cmaxwhich, cminwhich;
rp = ((float) r) / 255;
gp = ((float) g) / 255;
bp = ((float) b) / 255;
//debug ("rgb=%d,%d,%d rgbprime=%f,%f,%f", r, g, b, rp, gp, bp);
cmax = rp;
cmaxwhich = 0; /* faster comparison afterwards */
if (gp > cmax) { cmax = gp; cmaxwhich = 1; }
if (bp > cmax) { cmax = bp; cmaxwhich = 2; }
cmin = rp;
cminwhich = 0;
if (gp < cmin) { cmin = gp; cminwhich = 1; }
if (bp < cmin) { cmin = bp; cminwhich = 2; }
//debug ("cmin=%f,cmax=%f", cmin, cmax);
delta = cmax - cmin;
/* HUE */
if (delta == 0) {
*r_h = 0;
} else {
switch (cmaxwhich) {
case 0: /* cmax == rp */
*r_h = HUE_ANGLE * (fmod ((gp - bp) / delta, 6));
break;
case 1: /* cmax == gp */
*r_h = HUE_ANGLE * (((bp - rp) / delta) + 2);
break;
case 2: /* cmax == bp */
*r_h = HUE_ANGLE * (((rp - gp) / delta) + 4);
break;
}
if (*r_h < 0)
*r_h += 360;
}
/* LIGHTNESS/VALUE */
//l = (cmax + cmin) / 2;
*r_v = cmax;
/* SATURATION */
/*if (delta == 0) {
*r_s = 0;
} else {
*r_s = delta / (1 - fabs (1 - (2 * (l - 1))));
}*/
if (cmax == 0) {
*r_s = 0;
} else {
*r_s = delta / cmax;
}
//debug ("rgb=%d,%d,%d ---> hsv=%f,%f,%f", r, g, b, *r_h, *r_s, *r_v);
}
void hsv_to_rgb (float h, float s, float v, int *r_r, int *r_g, int *r_b) {
if (h > 360)
h -= 360;
if (h < 0)
h += 360;
h = CLAMP (h, 0, 360);
s = CLAMP (s, 0, 1);
v = CLAMP (v, 0, 1);
float c = v * s;
float x = c * (1 - fabsf (fmod ((h / HUE_ANGLE), 2) - 1));
float m = v - c;
float rp, gp, bp;
int a = h / 60;
//debug ("h=%f, a=%d", h, a);
switch (a) {
case 0:
rp = c;
gp = x;
bp = 0;
break;
case 1:
rp = x;
gp = c;
bp = 0;
break;
case 2:
rp = 0;
gp = c;
bp = x;
break;
case 3:
rp = 0;
gp = x;
bp = c;
break;
case 4:
rp = x;
gp = 0;
bp = c;
break;
default: // case 5:
rp = c;
gp = 0;
bp = x;
break;
}
*r_r = (rp + m) * 255;
*r_g = (gp + m) * 255;
*r_b = (bp + m) * 255;
//debug ("hsv=%f,%f,%f, ---> rgb=%d,%d,%d", h, s, v, *r_r, *r_g, *r_b);
}
通过为RGBS和V使用0-1范围和为Hue使用0-6范围(避免除法),并将案例分为两类,我创建了一个可能更快的实现:
#include <math.h>
#include <float.h>
void fromRGBtoHSV(float rgb[], float hsv[])
{
// for(int i=0; i<3; ++i)
// rgb[i] = max(0.0f, min(1.0f, rgb[i]));
hsv[0] = 0.0f;
hsv[2] = max(rgb[0], max(rgb[1], rgb[2]));
const float delta = hsv[2] - min(rgb[0], min(rgb[1], rgb[2]));
if (delta < FLT_MIN)
hsv[1] = 0.0f;
else
{
hsv[1] = delta / hsv[2];
if (rgb[0] >= hsv[2])
{
hsv[0] = (rgb[1] - rgb[2]) / delta;
if (hsv[0] < 0.0f)
hsv[0] += 6.0f;
}
else if (rgb[1] >= hsv[2])
hsv[0] = 2.0f + (rgb[2] - rgb[0]) / delta;
else
hsv[0] = 4.0f + (rgb[0] - rgb[1]) / delta;
}
}
void fromHSVtoRGB(const float hsv[], float rgb[])
{
if(hsv[1] < FLT_MIN)
rgb[0] = rgb[1] = rgb[2] = hsv[2];
else
{
const float h = hsv[0];
const int i = (int)h;
const float f = h - i;
const float p = hsv[2] * (1.0f - hsv[1]);
if (i & 1) {
const float q = hsv[2] * (1.0f - (hsv[1] * f));
switch(i) {
case 1:
rgb[0] = q;
rgb[1] = hsv[2];
rgb[2] = p;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = hsv[2];
break;
default:
rgb[0] = hsv[2];
rgb[1] = p;
rgb[2] = q;
break;
}
}
else
{
const float t = hsv[2] * (1.0f - (hsv[1] * (1.0f - f)));
switch(i) {
case 0:
rgb[0] = hsv[2];
rgb[1] = t;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = hsv[2];
rgb[2] = t;
break;
default:
rgb[0] = t;
rgb[1] = p;
rgb[2] = hsv[2];
break;
}
}
}
}
对于0-255范围,只需* 255.0f + 0.5f,并将其分配给无符号字符(或除以255.0得到相反的值)。
// This pair of functions convert HSL to RGB and vice-versa.
// It's pretty optimized for execution speed
typedef unsigned char BYTE
typedef struct _RGB
{
BYTE R;
BYTE G;
BYTE B;
} RGB, *pRGB;
typedef struct _HSL
{
float H; // color Hue (0.0 to 360.0 degrees)
float S; // color Saturation (0.0 to 1.0)
float L; // Luminance (0.0 to 1.0)
float V; // Value (0.0 to 1.0)
} HSL, *pHSL;
float *fMin (float *a, float *b)
{
return *a <= *b? a : b;
}
float *fMax (float *a, float *b)
{
return *a >= *b? a : b;
}
void RGBtoHSL (pRGB rgb, pHSL hsl)
{
// See https://en.wikipedia.org/wiki/HSL_and_HSV
// rgb->R, rgb->G, rgb->B: [0 to 255]
float r = (float) rgb->R / 255;
float g = (float) rgb->G / 255;
float b = (float) rgb->B / 255;
float *min = fMin(fMin(&r, &g), &b);
float *max = fMax(fMax(&r, &g), &b);
float delta = *max - *min;
// L, V [0.0 to 1.0]
hsl->L = (*max + *min)/2;
hsl->V = *max;
// Special case for H and S
if (delta == 0)
{
hsl->H = 0.0f;
hsl->S = 0.0f;
}
else
{
// Special case for S
if((*max == 0) || (*min == 1))
hsl->S = 0;
else
// S [0.0 to 1.0]
hsl->S = (2 * *max - 2*hsl->L)/(1 - fabsf(2*hsl->L - 1));
// H [0.0 to 360.0]
if (max == &r) hsl->H = fmod((g - b)/delta, 6); // max is R
else if (max == &g) hsl->H = (b - r)/delta + 2; // max is G
else hsl->H = (r - g)/delta + 4; // max is B
hsl->H *= 60;
}
}
void HSLtoRGB (pHSL hsl, pRGB rgb)
{
// See https://en.wikipedia.org/wiki/HSL_and_HSV
float a, k, fm1, fp1, f1, f2, *f3;
// L, V, S: [0.0 to 1.0]
// rgb->R, rgb->G, rgb->B: [0 to 255]
fm1 = -1;
fp1 = 1;
f1 = 1-hsl->L;
a = hsl->S * *fMin(&hsl->L, &f1);
k = fmod(0 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->R = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
k = fmod(8 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->G = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
k = fmod(4 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->B = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
}