Answers:
如果添加括号,则表达式有效:
>>> y[(1 < x) & (x < 5)]
array(['o', 'o', 'a'],
dtype='|S1')
(0 < x) & (x < 10)
(如答案中所示),而不是0 < x < 10
它不适用于任何Python版本上的numpy数组。
IMO OP实际上并不需要np.bitwise_and()
(aka &
),但实际上是需要的,np.logical_and()
因为它们正在比较逻辑值,例如True
和False
-请参阅此SO 逻辑与按位比较,以了解区别。
>>> x = array([5, 2, 3, 1, 4, 5])
>>> y = array(['f','o','o','b','a','r'])
>>> output = y[np.logical_and(x > 1, x < 5)] # desired output is ['o','o','a']
>>> output
array(['o', 'o', 'a'],
dtype='|S1')
同样的方法是np.all()
通过axis
适当设置参数。
>>> output = y[np.all([x > 1, x < 5], axis=0)] # desired output is ['o','o','a']
>>> output
array(['o', 'o', 'a'],
dtype='|S1')
通过数字:
>>> %timeit (a < b) & (b < c)
The slowest run took 32.97 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 1.15 µs per loop
>>> %timeit np.logical_and(a < b, b < c)
The slowest run took 32.59 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 1.17 µs per loop
>>> %timeit np.all([a < b, b < c], 0)
The slowest run took 67.47 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 5.06 µs per loop
所以使用np.all()
比较慢,但&
和logical_and
大致相同。
output = y[np.logical_and(x > 1, x < 5)]
,它也是第二个参数,因为它是在函数外部进行求值的,因此可能会创建一个巨大的数组。IOW,通过了两个已经评估的参数。这与的通常情况有所不同,在通常情况下,如果为true ,则不会进行评估。x < 5
logical_and
a and b
b
a
在@JF Sebastian和@Mark Mikofski的答案中添加一个细节:
如果要获取相应的索引(而不是数组的实际值),则将执行以下代码:
为了满足多个(所有)条件:
select_indices = np.where( np.logical_and( x > 1, x < 5) )[0] # 1 < x <5
为了满足多个(或)条件:
select_indices = np.where( np.logical_or( x < 1, x > 5 ) )[0] # x <1 or x >5
(the array of indices you want,)
,因此,您需要select_indices = np.where(...)[0]
获取所需的结果并期待。
我喜欢np.vectorize
用于此类任务。考虑以下:
>>> # Arrays
>>> x = np.array([5, 2, 3, 1, 4, 5])
>>> y = np.array(['f','o','o','b','a','r'])
>>> # Function containing the constraints
>>> func = np.vectorize(lambda t: t>1 and t<5)
>>> # Call function on x
>>> y[func(x)]
>>> array(['o', 'o', 'a'], dtype='<U1')
好处是您可以在向量化函数中添加更多类型的约束。
希望能帮助到你。
对于2D阵列,您可以执行此操作。使用条件创建2D蒙版。根据数组,将条件掩码类型转换为int或float,然后将其与原始数组相乘。
In [8]: arr
Out[8]:
array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.]])
In [9]: arr*(arr % 2 == 0).astype(np.int)
Out[9]:
array([[ 0., 2., 0., 4., 0.],
[ 6., 0., 8., 0., 10.]])