块数组尺寸


367

我目前正在尝试学习Numpy和Python。给定以下数组:

import numpy as np
a = np.array([[1,2],[1,2]])

有没有返回尺寸的函数a(ega是2 x 2数组)?

size() 返回4并没有太大帮助。


26
一条建议:您的“尺寸” shape在NumPy 中称为。在您的情况下(ndim),NumPy所谓的尺寸为2 。了解通常的NumPy术语很有用:这使阅读文档更加容易!
Eric O Lebigot

Answers:


498

.shape

ndarray。 数组尺寸的形状
元组。

从而:

>>> a.shape
(2, 2)

25
注意:由于它不是使用函数调用语法来调用的,因此shape可能比作为函数更准确地描述为属性
nobar 2012年

17
@nobar实际上是一个属性(实际上既是属性又是函数)
2014年

@wim更具体地说,属性是一个类。对于类属性(您放置在类中的属性),它们是属性类型的对象,公开为类的属性。在python中,属性是点号后面的名称
Pedro Rodrigues

2
如果您真的想挑剔,那是一个描述符。尽管property本身是一个类,ndarray.shape不是一个类,但它是属性类型的实例。
wim

66

第一:

按照惯例,在Python世界中,的快捷方式numpynp,因此:

In [1]: import numpy as np

In [2]: a = np.array([[1,2],[3,4]])

第二:

在Numpy中,维度轴/轴形状是相关的,有时是相似的概念:

尺寸

在“ 数学/物理学”中,维或维数被非正式地定义为指定空间中任何点所需的最小坐标数。但在numpy的,根据numpy的文档,这是相同的轴线/轴:

在Numpy中,尺寸称为轴。轴数为等级。

In [3]: a.ndim  # num of dimensions/axes, *Mathematics definition of dimension*
Out[3]: 2

轴/轴

在Numpy中索引an 的第n个坐标array。多维数组每个轴可以有一个索引。

In [4]: a[1,0]  # to index `a`, we specific 1 at the first axis and 0 at the second axis.
Out[4]: 3  # which results in 3 (locate at the row 1 and column 0, 0-based index)

形状

描述沿每个可用轴有多少数据(或范围)。

In [5]: a.shape
Out[5]: (2, 2)  # both the first and second axis have 2 (columns/rows/pages/blocks/...) data

45
import numpy as np   
>>> np.shape(a)
(2,2)

如果输入不是numpy数组而是列表列表,则也可以使用

>>> a = [[1,2],[1,2]]
>>> np.shape(a)
(2,2)

或元组的元组

>>> a = ((1,2),(1,2))
>>> np.shape(a)
(2,2)

np.shape如果没有shape属性,则首先将其参数转换为数组,这就是为什么它可用于列表和元组示例的原因。
hpaulj

17

您可以使用.shape

In: a = np.array([[1,2,3],[4,5,6]])
In: a.shape
Out: (2, 3)
In: a.shape[0] # x axis
Out: 2
In: a.shape[1] # y axis
Out: 3

9

您可以使用.ndim尺寸并.shape知道确切尺寸

var = np.array([[1,2,3,4,5,6], [1,2,3,4,5,6]])

var.ndim
# displays 2

var.shape
# display 6, 2

您可以使用.reshape功能更改尺寸

var = np.array([[1,2,3,4,5,6], [1,2,3,4,5,6]]).reshape(3,4)

var.ndim
#display 2

var.shape
#display 3, 4

7

shape方法要求它a是一个Numpy ndarray。但是Numpy还可以计算纯python对象的可迭代对象的形状:

np.shape([[1,2],[1,2]])

1

a.shape只是的受限版本np.info()。看一下这个:

import numpy as np
a = np.array([[1,2],[1,2]])
np.info(a)

class:  ndarray
shape:  (2, 2)
strides:  (8, 4)
itemsize:  4
aligned:  True
contiguous:  True
fortran:  False
data pointer: 0x27509cf0560
byteorder:  little
byteswap:  False
type: int32
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.