在matplotlib中设置颜色栏范围


155

我有以下代码:

import matplotlib.pyplot as plt

cdict = {
  'red'  :  ( (0.0, 0.25, .25), (0.02, .59, .59), (1., 1., 1.)),
  'green':  ( (0.0, 0.0, 0.0), (0.02, .45, .45), (1., .97, .97)),
  'blue' :  ( (0.0, 1.0, 1.0), (0.02, .75, .75), (1., 0.45, 0.45))
}

cm = m.colors.LinearSegmentedColormap('my_colormap', cdict, 1024)

plt.clf()
plt.pcolor(X, Y, v, cmap=cm)
plt.loglog()
plt.xlabel('X Axis')
plt.ylabel('Y Axis')

plt.colorbar()
plt.show()

因此,这将使用指定的颜色图在X轴和Y轴上生成值“ v”的图形。X和Y轴是完美的,但是颜色图在v的最小值和最大值之间分布。我想强制颜色图的范围在0到1之间。

我想到使用:

plt.axis(...)

设置轴的范围,但这仅接受X和Y的最小值和最大值的参数,而不使用颜色图。

编辑:

为了清楚起见,假设我有一个图的值的范围为(0 ... 0.3),而另一个图的值为(0.2 ... 0.8)。

在两个图中,我都希望颜色条的范围为(0 ... 1)。在两个图中,我希望使用上述整个cdict范围时该颜色范围是相同的(因此,两个图中的0.25将是相同颜色)。在第一个图形中,介于0.3到1.0之间的所有颜色将不会显示在图形中,但是会在侧面的颜色栏键中显示。另一方面,所有介于0和0.2之间以及介于0.8和1之间的颜色都不会出现在图表中,而是会出现在侧面的颜色栏中。

Answers:


177

使用vminvmax强制使用颜色范围。这是一个例子:

在此处输入图片说明

import matplotlib as m
import matplotlib.pyplot as plt
import numpy as np

cdict = {
  'red'  :  ( (0.0, 0.25, .25), (0.02, .59, .59), (1., 1., 1.)),
  'green':  ( (0.0, 0.0, 0.0), (0.02, .45, .45), (1., .97, .97)),
  'blue' :  ( (0.0, 1.0, 1.0), (0.02, .75, .75), (1., 0.45, 0.45))
}

cm = m.colors.LinearSegmentedColormap('my_colormap', cdict, 1024)

x = np.arange(0, 10, .1)
y = np.arange(0, 10, .1)
X, Y = np.meshgrid(x,y)

data = 2*( np.sin(X) + np.sin(3*Y) )

def do_plot(n, f, title):
    #plt.clf()
    plt.subplot(1, 3, n)
    plt.pcolor(X, Y, f(data), cmap=cm, vmin=-4, vmax=4)
    plt.title(title)
    plt.colorbar()

plt.figure()
do_plot(1, lambda x:x, "all")
do_plot(2, lambda x:np.clip(x, -4, 0), "<0")
do_plot(3, lambda x:np.clip(x, 0, 4), ">0")
plt.show()

3
为什么这个答案比@Amro发布的使用plt.clim的答案更好?
亚历克斯·拉姆森

89

使用CLIM函数(相当于MATLAB中的CAXIS函数):

plt.pcolor(X, Y, v, cmap=cm)
plt.clim(-4,4)  # identical to caxis([-4,4]) in MATLAB
plt.show()

2
我相信clim()会缩放颜色轴,但是颜色本身会更改值。无论比例尺是多少,沿比例尺上某个分数的点将具有相同的颜色,但是其表示的值将改变。
保罗

4
是。这是请求程序的理想行为,因此解决了以下问题:图形之间的色标相同。
Excalabur

16

不知道这是否是最优雅的解决方案(这就是我使用的解决方案),但是您可以将数据缩放到0到1之间的范围,然后修改颜色栏:

import matplotlib as mpl
...
ax, _ = mpl.colorbar.make_axes(plt.gca(), shrink=0.5)
cbar = mpl.colorbar.ColorbarBase(ax, cmap=cm,
                       norm=mpl.colors.Normalize(vmin=-0.5, vmax=1.5))
cbar.set_clim(-2.0, 2.0)

使用两个不同的限制,您可以控制颜色栏的范围和图例。在此示例中,栏中仅显示-0.5到1.5之间的范围,而色图则覆盖-2到2(因此这可能是您的数据范围,您在缩放之前记录了该范围)。

因此,您不必缩放颜色图,而是可以缩放数据并使颜色条适合该值。


1
我认为那是在做些微不同的事情……抱歉,我的问题可能不够精确。您的解决方案将缩放颜色,以便以前用于表示值1.0的颜色现在将表示数据中的最大值。颜色栏将显示我需要的0..1(vmin = 0,vmax = 1),但是高于此最大值的所有颜色都将是相同的颜色...
Paul 2010年

1
...我已经更新了我的问题,以更清楚地显示我的追求。对不起,如果我太含糊。
保罗2010年

10

使用图形环境和.set_clim()

如果您有多个图,可能会更容易,更安全地进行此选择:

import matplotlib as m
import matplotlib.pyplot as plt
import numpy as np

cdict = {
  'red'  :  ( (0.0, 0.25, .25), (0.02, .59, .59), (1., 1., 1.)),
  'green':  ( (0.0, 0.0, 0.0), (0.02, .45, .45), (1., .97, .97)),
  'blue' :  ( (0.0, 1.0, 1.0), (0.02, .75, .75), (1., 0.45, 0.45))
}

cm = m.colors.LinearSegmentedColormap('my_colormap', cdict, 1024)

x = np.arange(0, 10, .1)
y = np.arange(0, 10, .1)
X, Y = np.meshgrid(x,y)

data = 2*( np.sin(X) + np.sin(3*Y) )
data1 = np.clip(data,0,6)
data2 = np.clip(data,-6,0)
vmin = np.min(np.array([data,data1,data2]))
vmax = np.max(np.array([data,data1,data2]))

fig = plt.figure()
ax = fig.add_subplot(131)
mesh = ax.pcolormesh(data, cmap = cm)
mesh.set_clim(vmin,vmax)
ax1 = fig.add_subplot(132)
mesh1 = ax1.pcolormesh(data1, cmap = cm)
mesh1.set_clim(vmin,vmax)
ax2 = fig.add_subplot(133)
mesh2 = ax2.pcolormesh(data2, cmap = cm)
mesh2.set_clim(vmin,vmax)
# Visualizing colorbar part -start
fig.colorbar(mesh,ax=ax)
fig.colorbar(mesh1,ax=ax1)
fig.colorbar(mesh2,ax=ax2)
fig.tight_layout()
# Visualizing colorbar part -end

plt.show()

在此处输入图片说明

单个彩条

最好的选择是对整个图使用单个颜色条。有多种方法可以完成此操作,教程对于了解最佳选择非常有用。我更喜欢这种解决方案,您只需复制和粘贴即可,而不是之前的可视化颜色栏代码。

fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,
                    wspace=0.4, hspace=0.1)
cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])
cbar = fig.colorbar(mesh, cax=cb_ax)

在此处输入图片说明

聚苯乙烯

我建议使用pcolormesh代替,pcolor因为它速度更快(此处有更多信息)。

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.