python如何用零填充numpy数组


99

我想知道如何使用python 2.6.6和numpy版本1.5.0用零填充2D numpy数组。抱歉! 但是这些是我的局限性。因此我不能使用np.pad。例如,我想a用零填充以使其形状匹配b。我想这样做的原因是我可以这样做:

b-a

这样

>>> a
array([[ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.]])
>>> b
array([[ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.]])
>>> c
array([[1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0]])

我能想到的唯一方法是追加,但这看起来很丑。是否有可能使用更清洁的解决方案b.shape

编辑,谢谢MSeiferts的答案。我必须清理一下,这就是我得到的:

def pad(array, reference_shape, offsets):
    """
    array: Array to be padded
    reference_shape: tuple of size of ndarray to create
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
    """

    # Create an array of zeros with the reference shape
    result = np.zeros(reference_shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = array
    return result

Answers:


161

很简单,使用参考形状创建一个包含零的数组:

result = np.zeros(b.shape)
# actually you can also use result = np.zeros_like(b) 
# but that also copies the dtype not only the shape

然后在需要的地方插入数组:

result[:a.shape[0],:a.shape[1]] = a

瞧,您已经填充了它:

print(result)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果您定义应该在左上方插入元素的位置,也可以使其更通用一些

result = np.zeros_like(b)
x_offset = 1  # 0 would be what you wanted
y_offset = 1  # 0 in your case
result[x_offset:a.shape[0]+x_offset,y_offset:a.shape[1]+y_offset] = a
result

array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.]])

但请注意,偏移量不要超过允许的范围。例如x_offset = 2,这将失败。


如果您有任意数量的维,则可以定义切片列表以插入原始数组。我发现有趣的是可以玩一下,并创建了一个填充函数,该函数可以填充(偏移)任意形状的数组,只要数组和引用的维数相同且偏移量不太大即可。

def pad(array, reference, offsets):
    """
    array: Array to be padded
    reference: Reference array with the desired shape
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    """
    # Create an array of zeros with the reference shape
    result = np.zeros(reference.shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offset[dim], offset[dim] + array.shape[dim]) for dim in range(a.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = a
    return result

和一些测试用例:

import numpy as np

# 1 Dimension
a = np.ones(2)
b = np.ones(5)
offset = [3]
pad(a, b, offset)

# 3 Dimensions

a = np.ones((3,3,3))
b = np.ones((5,4,3))
offset = [1,0,0]
pad(a, b, offset)

总结一下我需要的情况:如果要插入原点,则任意尺寸:padded = np.zeros(b.shape) padded[tuple(slice(0,n) for n in a.shape)] = a
shaneb

169

NumPy 1.7.0(numpy.pad添加时)现在已经很老了(它于2013年发布),因此即使问题要求使用不使用该功能的方法,我也认为了解使用可以实现该功能很有用numpy.pad

实际上很简单:

>>> import numpy as np
>>> a = np.array([[ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.]])
>>> np.pad(a, [(0, 1), (0, 1)], mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

在这种情况下,我使用0的默认值mode='constant'。但是也可以通过显式传递它来指定它:

>>> np.pad(a, [(0, 1), (0, 1)], mode='constant', constant_values=0)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

以防第二个参数([(0, 1), (0, 1)])令人困惑:每个列表项(在本例中为元组)都对应于一个维度,并且其中的每个项都表示(第一个元素)之前之后(第二个元素)的填充。所以:

[(0, 1), (0, 1)]
         ^^^^^^------ padding for second dimension
 ^^^^^^-------------- padding for first dimension

  ^------------------ no padding at the beginning of the first axis
     ^--------------- pad with one "value" at the end of the first axis.

在这种情况下,第一轴和第二轴的填充相同,因此也可以只传入2元组:

>>> np.pad(a, (0, 1), mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果前后的填充相同,甚至可以省略该元组(尽管在这种情况下不适用):

>>> np.pad(a, 1, mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.]])

或者,如果前后的填充相同但轴的填充不同,则也可以在内部元组中省略第二个参数:

>>> np.pad(a, [(1, ), (2, )], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

但是我倾向于始终使用显式的,因为这样做很容易犯错(当NumPys的期望与您的意图有所不同时):

>>> np.pad(a, [1, 2], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

在这里,NumPy认为您希望在每个轴前填充1个元素,在每个轴后填充2个元素!即使您打算用轴1中的1个元素和轴2中的2个元素填充。

我使用元组列表进行填充,请注意,这只是“我的约定”,您也可以使用列表列表或元组的元组,甚至数组的元组。NumPy只是检查参数的长度(如果没有长度)和每个项目的长度(或者如果有长度)!


5
真的很好解释了。远胜于原始文档。谢谢。
M.Innat '18

mode='constant'是明智的默认设置,因此无需使用任何可选关键字就可以实现零填充,从而使代码的可读性更高。
divenex

如何仅将填充添加到3D numpy数组的第三维?
拉姆沙·西迪基

@RamshaSiddiqui可以将0用作不应填充的尺寸。
MSeifert

9

我了解您的主要问题是您需要计算,d=b-a但数组的大小不同。无需中间填充c

您可以解决此问题而无需填充:

import numpy as np

a = np.array([[ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.]])

b = np.array([[ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.]])

d = b.copy()
d[:a.shape[0],:a.shape[1]] -=  a

print d

输出:

[[ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 3.  3.  3.  3.  3.  3.]]

的确,对于他的特定情况,他不一定需要填充,但这是填充和您的方法等效的极少数算术运算之一。不过答案不错!
MSeifert

1
不仅。与零填充相比,这还可以提高内存效率。
norok2 '18

0

如果需要向数组添加1s的范围:

>>> mat = np.zeros((4,4), np.int32)
>>> mat
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
>>> mat[0,:] = mat[:,0] = mat[:,-1] =  mat[-1,:] = 1
>>> mat
array([[1, 1, 1, 1],
       [1, 0, 0, 1],
       [1, 0, 0, 1],
       [1, 1, 1, 1]])

0

我知道我有点晚了,但是如果您想执行相对填充(aka边缘填充),可以通过以下方法实现它。请注意,分配的第一个实例将导致零填充,因此您可以将其用于零填充和相对填充(这是将原始数组的边值复制到填充数组中的地方)。

def replicate_padding(arr):
    """Perform replicate padding on a numpy array."""
    new_pad_shape = tuple(np.array(arr.shape) + 2) # 2 indicates the width + height to change, a (512, 512) image --> (514, 514) padded image.
    padded_array = np.zeros(new_pad_shape) #create an array of zeros with new dimensions
    
    # perform replication
    padded_array[1:-1,1:-1] = arr        # result will be zero-pad
    padded_array[0,1:-1] = arr[0]        # perform edge pad for top row
    padded_array[-1, 1:-1] = arr[-1]     # edge pad for bottom row
    padded_array.T[0, 1:-1] = arr.T[0]   # edge pad for first column
    padded_array.T[-1, 1:-1] = arr.T[-1] # edge pad for last column
    
    #at this point, all values except for the 4 corners should have been replicated
    padded_array[0][0] = arr[0][0]     # top left corner
    padded_array[-1][0] = arr[-1][0]   # bottom left corner
    padded_array[0][-1] = arr[0][-1]   # top right corner 
    padded_array[-1][-1] = arr[-1][-1] # bottom right corner

    return padded_array

复杂度分析:

对此的最佳解决方案是numpy的pad方法。在平均运行5次之后,具有相对填充的np.pad仅8%比上面定义的函数好。这表明这是相对填充和零填充的最佳方法。


#My method, replicate_padding
start = time.time()
padded = replicate_padding(input_image)
end = time.time()
delta0 = end - start

#np.pad with edge padding
start = time.time()
padded = np.pad(input_image, 1, mode='edge')
end = time.time()
delta = end - start


print(delta0) # np Output: 0.0008790493011474609 
print(delta)  # My Output: 0.0008130073547363281
print(100*((delta0-delta)/delta)) # Percent difference: 8.12316715542522%
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.