为什么Python的数组变慢?


153

我期望array.array比列表更快,因为数组似乎已拆箱。

但是,我得到以下结果:

In [1]: import array

In [2]: L = list(range(100000000))

In [3]: A = array.array('l', range(100000000))

In [4]: %timeit sum(L)
1 loop, best of 3: 667 ms per loop

In [5]: %timeit sum(A)
1 loop, best of 3: 1.41 s per loop

In [6]: %timeit sum(L)
1 loop, best of 3: 627 ms per loop

In [7]: %timeit sum(A)
1 loop, best of 3: 1.39 s per loop

造成这种差异的原因是什么?


4
numpy工具可以有效利用您的数组:%timeit np.sum(A):100个循环,每个循环最好3:8.87毫秒
BM

6
我从未遇到需要使用该array程序包的情况。如果您想做大量的数学运算,则Numpy会以光速(即C)运行,通常比幼稚的实现要好sum()
尼克T

40
亲密的选民:为什么正是这种基于意见的观点?OP似乎在询问有关可测量和可重复现象的特定技术问题。
凯文

5
@NickT阅读优化轶事。事实证明array,将整数(代表ASCII字节)字符串转换为对象非常快str。Guido自己只是在提出许多其他解决方案后才想到这一点,并对性能感到惊讶。无论如何,这是我记得看到它有用的唯一地方。numpy处理数组要好得多,但这是第三方的依赖。
Bakuriu

Answers:


220

存储是“未装箱的”,但是每次访问元素时,Python都必须对其进行“装箱”(将其嵌入到常规Python对象中),以便对其进行任何处理。例如,您sum(A)遍历数组,并将每个整数一次装在一个常规Python int对象中。那要花时间。在您的中sum(L),所有装箱操作均在创建列表时完成。

因此,最后,阵列通常较慢,但所需的内存却少得多。


这是最新版本的Python 3的相关代码,但是自Python首次发布以来,相同的基本思想也适用于所有CPython实现。

这是访问列表项的代码:

PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
    /* error checking omitted */
    return ((PyListObject *)op) -> ob_item[i];
}

它几乎没有什么: somelist[i]只返回i列表中的第一个对象(CPython中的所有Python对象都是指向结构的指针,该结构的初始段符合a的布局struct PyObject)。

__getitem__array带有类型代码的实现l

static PyObject *
l_getitem(arrayobject *ap, Py_ssize_t i)
{
    return PyLong_FromLong(((long *)ap->ob_item)[i]);
}

原始内存被视为平台本地C long整数的向量;该i“个C long被读取起来; 然后PyLong_FromLong()调用该方法将本机包装(“框”)C long在Python long对象中(在Python 3中,该对象消除了Python 2 int和之间的区别long,实际上显示为type int)。

此装箱必须为Python int对象分配新的内存,然后将native C long的位喷入其中。在原始示例的上下文中,该对象的生存期非常短(足够长,足以sum()将内容添加到运行总计中),然后需要更多时间才能取消分配新int对象。

在CPython实现中,这就是速度差异的来源,永远都是这样,永远都是这样。


87

为了增加蒂姆·彼得斯的出色答案,数组实现了缓冲协议,而列表则没有。这意味着,如果您正在编写C扩展名(或道德上的对等物,例如编写Cython模块),则可以比Python更快地访问和使用数组的元素。这将为您带来可观的速度改进,可能远远超过一个数量级。但是,它有很多缺点:

  1. 您现在正从事编写C而不是Python的工作。Cython是改善这种情况的一种方法,但是并不能消除语言之间的许多基本差异;您需要熟悉C语义并了解它在做什么。
  2. PyPy的C API 在某种程度上可以正常工作,但是速度不是很快。如果您以PyPy为目标,则可能应该只编写带有常规列表的简单代码,然后让JITter为您优化它。
  3. C扩展比纯Python代码更难分发,因为它们需要编译。编译通常取决于体系结构和操作系统,因此您需要确保要针对目标平台进行编译。

直接转到C扩展程序可能会使用大锤拍打苍蝇,具体取决于您的用例。您首先应该研究NumPy,看看它是否足够强大,可以执行您想做的任何数学运算。如果正确使用,它将比本地Python快得多。


10

蒂姆·彼得斯(Tim Peters)回答了为什么这样做很慢,但让我们看看如何改善它。

坚持您的示例sum(range(...))(比示例小10倍,以适合此处的内存):

import numpy
import array
L = list(range(10**7))
A = array.array('l', L)
N = numpy.array(L)

%timeit sum(L)
10 loops, best of 3: 101 ms per loop

%timeit sum(A)
1 loop, best of 3: 237 ms per loop

%timeit sum(N)
1 loop, best of 3: 743 ms per loop

这样numpy也需要装箱/拆箱,这有额外的开销。要使其快速运行,必须停留在numpy C代码内:

%timeit N.sum()
100 loops, best of 3: 6.27 ms per loop

因此,从列表解决方案到numpy版本,这是运行时的因素16。

我们还要检查创建这些数据结构需要花费多长时间

%timeit list(range(10**7))
1 loop, best of 3: 283 ms per loop

%timeit array.array('l', range(10**7))
1 loop, best of 3: 884 ms per loop

%timeit numpy.array(range(10**7))
1 loop, best of 3: 1.49 s per loop

%timeit numpy.arange(10**7)
10 loops, best of 3: 21.7 ms per loop

明确的获胜者:Numpy

还要注意,创建数据结构所花费的时间与求和所花费的时间差不多,甚至更多。分配内存很慢。

那些的内存使用情况:

sys.getsizeof(L)
90000112
sys.getsizeof(A)
81940352
sys.getsizeof(N)
80000096

因此,每个数字占用8个字节,开销各不相同。对于此范围,我们使用32位整数就足够了,因此我们可以保护一些内存。

N=numpy.arange(10**7, dtype=numpy.int32)

sys.getsizeof(N)
40000096

%timeit N.sum()
100 loops, best of 3: 8.35 ms per loop

但是事实证明,在我的计算机上添加64位整数要快于32位整数,因此只有在受内存/带宽限制的情况下才值得这样做。


-1

请注意,100000000等于10^8不等于10^7,我的结果如下所示:

100000000 == 10**8

# my test results on a Linux virtual machine:
#<L = list(range(100000000))> Time: 0:00:03.263585
#<A = array.array('l', range(100000000))> Time: 0:00:16.728709
#<L = list(range(10**8))> Time: 0:00:03.119379
#<A = array.array('l', range(10**8))> Time: 0:00:18.042187
#<A = array.array('l', L)> Time: 0:00:07.524478
#<sum(L)> Time: 0:00:01.640671
#<np.sum(L)> Time: 0:00:20.762153
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.