二维阵列中的峰检测


873

我正在帮助兽医诊所测量狗爪下的压力。我使用Python进行数据分析,但现在我一直试图将爪子分成(解剖)子区域。

我制作了每个爪子的2D数组,其中包含爪子随时间推移已加载的每个传感器的最大值。这是一个爪子的示例,我使用Excel绘制了要“检测”的区域。这些是传感器周围具有最大最大值的2 x 2框,它们的总和最大。

替代文字

因此,我尝试了一些实验,并决定只查找每一列和每一行的最大值(由于爪子的形状而不能朝一个方向看)。这似乎可以很好地“检测”到各个脚趾的位置,但是它也标记了相邻的传感器。

替代文字

那么,告诉Python我想要这些最大值中的哪一个是最好的方法呢?

注意:2x2的正方形不能重叠,因为它们必须是单独的脚趾!

同样我以2x2为方便,欢迎使用任何更高级的解决方案,但我只是人类运动的科学家,所以我既不是真正的程序员也不是数学家,所以请保持“简单”。

是可以加载版本np.loadtxt


结果

因此,我尝试了@jextee的解决方案(请参见下面的结果)。如您所见,它在前爪上非常有效,但在后腿上效果较差。

更具体地说,它无法识别出第四脚趾的小峰。显然,这是循环固有的固有观点,即循环从上到下朝向最低值,而不考虑此位置。

谁会知道如何调整@jextee的算法,以便它也能够找到第四个脚趾?

替代文字

由于我尚未处理其他任何试验,因此无法提供其他任何样品。但是我之前提供的数据是每只爪子的平均值。该文件是一个数组,其中最大9爪的数据按它们与板接触的顺序排列。

此图显示了它们如何在空间上分布在板上。

替代文字

更新:

我已经为有兴趣的任何人建立了博客,为SkyDrive设置了所有原始测量值。因此,对于任何需要更多数据的人:给您更多的权力!


新更新:

因此,在获得帮助后,我遇到了有关爪子检测爪子分类的问题,我终于能够检查每个爪子的脚趾检测!事实证明,除了爪子大小像我自己的示例中的爪子一样,它在任何情况下都无法正常工作。事后看来,如此随意地选择2x2是我自己的错。

这是一个出问题的好例子:指甲被识别为脚趾,而“脚跟”是如此之宽,被识别两次!

替代文字

脚掌太大,因此尺寸为2x2,没有重叠,会导致两次检测到一些脚趾。相反,在小型犬中,它通常找不到第5个脚趾,我怀疑这是2x2区域太大造成的。

尝试所有测量的当前解决方案得出了一个惊人的结论:几乎对我所有的小型犬来说,它都找不到第五个脚趾,而在大型犬的50%以上的撞击中,它会发现更多!

所以很明显我需要更改它。我自己的猜测是将其大小更改为neighborhood较小的大小(对于小型狗)和较大的大小(对于大型狗)。但是generate_binary_structure不允许我更改数组的大小。

因此,我希望其他人对脚趾的定位有更好的建议,也许脚趾的面积与爪子的大小成正比?


我认为逗号是小数点而不是值分隔符?
MattH 2010年

是的,它们是逗号。和@克里斯蒂安,我试图将其粘贴到一个易于阅读的文件中,但是即使这样我也失败了:(
Ivo Flipse 2010年

3
当我进行可行性研究时,一切都会真正进行。因此,我正在寻找定义压力的方法,包括分区域。另外,我需要能够区分“大脚趾”和“小脚趾”,以估计方向。但是,由于以前没有做过,所以没有告诉我们可能会发现什么:-)
Ivo Flipse 2010年

2
@罗恩:这项研究的目标之一是确定该系统适合多大/多大的狗,所以是的,这只狗重约20公斤。我有一些体积较小(或较大)的产品,并期望我无法对真正的小型产品做同样的事情。
Ivo Flipse 2010年

2
f随时间推移测量爪子,因此是第三维。但是,它们不会离开他们的位置(相对而言),因此我最感兴趣的是2D中脚趾的位置。之后,免费提供3D效果
Ivo Flipse '18

Answers:


331

我使用局部最大滤波器检测到峰值。这是第一个4个爪子的数据集的结果: 峰检测结果

我还在9个爪子的第二个数据集上运行了它,效果也很好

这是您的操作方式:

import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
import matplotlib.pyplot as pp

#for some reason I had to reshape. Numpy ignored the shape header.
paws_data = np.loadtxt("paws.txt").reshape(4,11,14)

#getting a list of images
paws = [p.squeeze() for p in np.vsplit(paws_data,4)]


def detect_peaks(image):
    """
    Takes an image and detect the peaks usingthe local maximum filter.
    Returns a boolean mask of the peaks (i.e. 1 when
    the pixel's value is the neighborhood maximum, 0 otherwise)
    """

    # define an 8-connected neighborhood
    neighborhood = generate_binary_structure(2,2)

    #apply the local maximum filter; all pixel of maximal value 
    #in their neighborhood are set to 1
    local_max = maximum_filter(image, footprint=neighborhood)==image
    #local_max is a mask that contains the peaks we are 
    #looking for, but also the background.
    #In order to isolate the peaks we must remove the background from the mask.

    #we create the mask of the background
    background = (image==0)

    #a little technicality: we must erode the background in order to 
    #successfully subtract it form local_max, otherwise a line will 
    #appear along the background border (artifact of the local maximum filter)
    eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)

    #we obtain the final mask, containing only peaks, 
    #by removing the background from the local_max mask (xor operation)
    detected_peaks = local_max ^ eroded_background

    return detected_peaks


#applying the detection and plotting results
for i, paw in enumerate(paws):
    detected_peaks = detect_peaks(paw)
    pp.subplot(4,2,(2*i+1))
    pp.imshow(paw)
    pp.subplot(4,2,(2*i+2) )
    pp.imshow(detected_peaks)

pp.show()

之后,您要做的就是scipy.ndimage.measurements.label在蒙版上使用以标记所有不同的对象。这样您就可以分别与他们一起玩了。

请注意,该方法效果很好,因为背景不嘈杂。如果是这样,您将在背景中检测到许多其他不需要的峰。另一个重要因素是邻里的大小。如果峰大小发生变化,则需要对其进行调整(该值应保持大致比例)。


1
有比(eroded_background ^ local_peaks)更简单的解决方案。随便
看看

53

数据文件:paw.txt。源代码:

from scipy import *
from operator import itemgetter

n = 5  # how many fingers are we looking for

d = loadtxt("paw.txt")
width, height = d.shape

# Create an array where every element is a sum of 2x2 squares.

fourSums = d[:-1,:-1] + d[1:,:-1] + d[1:,1:] + d[:-1,1:]

# Find positions of the fingers.

# Pair each sum with its position number (from 0 to width*height-1),

pairs = zip(arange(width*height), fourSums.flatten())

# Sort by descending sum value, filter overlapping squares

def drop_overlapping(pairs):
    no_overlaps = []
    def does_not_overlap(p1, p2):
        i1, i2 = p1[0], p2[0]
        r1, col1 = i1 / (width-1), i1 % (width-1)
        r2, col2 = i2 / (width-1), i2 % (width-1)
        return (max(abs(r1-r2),abs(col1-col2)) >= 2)
    for p in pairs:
        if all(map(lambda prev: does_not_overlap(p,prev), no_overlaps)):
            no_overlaps.append(p)
    return no_overlaps

pairs2 = drop_overlapping(sorted(pairs, key=itemgetter(1), reverse=True))

# Take the first n with the heighest values

positions = pairs2[:n]

# Print results

print d, "\n"

for i, val in positions:
    row = i / (width-1)
    column = i % (width-1)
    print "sum = %f @ %d,%d (%d)" % (val, row, column, i)
    print d[row:row+2,column:column+2], "\n"

输出没有重叠的正方形。似乎选择了与您的示例相同的区域。

一些评论

棘手的部分是计算所有2x2平方和。我以为您需要所有这些,所以可能会有一些重叠。我使用切片从原始2D数组中剪切出第一行/最后一列和行,然后将它们全部重叠在一起并计算总和。

为了更好地理解它,对3x3阵列进行成像:

>>> a = arange(9).reshape(3,3) ; a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

然后,您可以对其进行切片:

>>> a[:-1,:-1]
array([[0, 1],
       [3, 4]])
>>> a[1:,:-1]
array([[3, 4],
       [6, 7]])
>>> a[:-1,1:]
array([[1, 2],
       [4, 5]])
>>> a[1:,1:]
array([[4, 5],
       [7, 8]])

现在,假设您将它们一个堆叠在另一个之上,然后将元素求和在相同位置。这些总和将与2x2正方形上的总和完全相同,并且左上角在相同位置:

>>> sums = a[:-1,:-1] + a[1:,:-1] + a[:-1,1:] + a[1:,1:]; sums
array([[ 8, 12],
       [20, 24]])

当总和超过2x2平方时,可以使用max来找到最大值或sortsorted来找到峰值。

为了记住峰的位置,我将每个值(总和)与其在平坦阵列中的序数位置相结合(请参见 zip)。然后,当我打印结果时,我再次计算行/列位置。

笔记

我允许2x2正方形重叠。编辑后的版本会过滤掉其中的一些,以便结果中仅显示不重叠的正方形。

选择手指(一个想法)

另一个问题是如何从所有峰中选择可能是手指的东西。我有一个想法可能会或可能不会。我现在没有时间实现它,所以只有伪代码。

我注意到,如果前手指几乎保持在一个完美的圆上,则后手指应该在该圆的内部。同样,前指或多或少地等距分布。我们可能会尝试使用这些启发式属性来检测手指。

伪代码:

select the top N finger candidates (not too many, 10 or 12)
consider all possible combinations of 5 out of N (use itertools.combinations)
for each combination of 5 fingers:
    for each finger out of 5:
        fit the best circle to the remaining 4
        => position of the center, radius
        check if the selected finger is inside of the circle
        check if the remaining four are evenly spread
        (for example, consider angles from the center of the circle)
        assign some cost (penalty) to this selection of 4 peaks + a rear finger
        (consider, probably weighted:
             circle fitting error,
             if the rear finger is inside,
             variance in the spreading of the front fingers,
             total intensity of 5 peaks)
choose a combination of 4 peaks + a rear peak with the lowest penalty

这是一种蛮力的方法。如果N相对较小,那么我认为它是可行的。对于N = 12,有C_12 ^ 5 = 792个组合,乘以5种选择后指的方式,因此每只爪子需要评估3960种情况。


给定您的结果列表,他将不得不手动滤除爪子...选择四个最上面的结果将为他提供四种可能性,以构造一个包含最大值6.8的2x2正方形
Johannes Charra 2010年

2x2框不能重叠,因为如果我想做统计,我不想使用相同的区域,我想比较区域:-)
Ivo Flipse 2010年

我编辑了答案。现在结果中没有重叠的正方形。
萨斯坦宁

1
我尝试了一下,它似乎适用于前爪,但不适用于后爪。猜猜我们将不得不尝试一些知道在哪里看的东西
Ivo Flipse 2010年

1
我解释了我的想法,如何用伪代码检测手指。如果您喜欢它,我可能会在明天晚上尝试实施。
萨斯坦宁

34

这是图像配准问题。总体策略是:

  • 有一个已知的例子,或某种先验的数据。
  • 使数据适合示例,或使示例适合数据。
  • 如果您的数据首先是大致对齐的,则将有帮助。

这是一种粗略而现成的方法,“可能会起作用的最愚蠢的事情”:

  • 从五个脚趾坐标开始,大致在您期望的位置。
  • 与每个人一起,反复攀登到山顶。即给定当前位置,如果其值大于当前像素,则移动到最大相邻像素。当脚趾坐标停止移动时停止。

要解决方向问题,您可以为基本方向(北,东北等)设置8个左右的初始设置。单独运行每个,并丢弃两个或多个脚趾最终位于同一像素的任何结果。我会再考虑一下,但是在图像处理中仍在研究这种东西-没有正确的答案!

稍微复杂一点的想法:(加权)K均值聚类。没那么糟糕。

  • 从五个脚趾坐标开始,但是现在这些是“集群中心”。

然后迭代直到收敛:

  • 将每个像素分配给最近的群集(只需为每个群集列出一个列表)。
  • 计算每个群集的质心。对于每个群集,这是:总和(坐标*强度值)/总和(坐标)
  • 将每个群集移动到新的质心。

这种方法几乎可以肯定会带来更好的结果,而且您​​会得到每个簇的质量,这可能有助于识别脚趾。

(同样,您已经预先指定了簇数。使用簇时,必须以一种或另一种方式指定密度:选择适合这种情况的簇数,或者选择一个簇半径,然后查看要终止的簇数后者的一个例子是均值漂移。)

抱歉,缺少实施细节或其他细节。我会对此进行编码,但是我有最后期限。如果下周没有其他工作,请告诉我,我会尝试一下。


1
问题是,爪子改变了方向,我没有正确的爪子的任何校准/基线。另外,我担心很多图像识别算法都超出了我的标准。
Ivo Flipse 2010年

“粗糙且准备就绪”的方法非常简单-也许我的想法不是很好。我将输入一些伪代码进行说明。
CakeMaster 2010年

我有一种感觉,您的建议将帮助您识别后爪,但我不知道该怎么做
Ivo Flipse 2010年

我添加了另一个想法。顺便说一下,如果您有大量的好数据,那么将其在线放置在某个地方会很酷。它对学习图像处理/机器学习的人们可能有用,您可能会从中得到更多代码...
CakeMaster 2010年

1
我只是想在一个简单的Wordpress博客上写下我的数据处理,只是为了供他人使用,无论如何我都必须写下来。我喜欢您的所有建议,但我担心我将不得不等待没有截止日期的人;-)
Ivo Flipse 2010年

18

使用持久同源性分析您的数据集,我得到以下结果(点击放大):

结果

这是此SO Answer中描述的峰值检测方法的2D版本。上图仅显示了按持久性排序的0维持久性同源类。

我使用scipy.misc.imresize()将原始数据集按比例放大了2倍。但是,请注意,我确实将这四个爪子视为一个数据集。将其分为四个部分将使问题更容易解决。

方法。 这背后的想法很简单:考虑为每个像素分配其级别的函数的函数图。看起来像这样:

3D功能图

现在考虑高度255处的水位,该水位连续下降到较低的水位。在局部最大的岛上弹出(出生)。在马鞍点,两个岛屿合并。我们认为较低的岛屿将合并到较高的岛屿(死亡)。所谓的持久性图(属于零维度同质性类,我们的岛屿)描述了所有岛屿的死亡人数与出生人数的关系:

持续图

持久性那么,一个岛屿就是出生和死亡水平之间的差异。点到灰色主对角线的垂直距离。该图通过减少持久性来标记岛屿。

第一张图片显示了岛屿的出生地点。该方法不仅给出局部最大值,而且通过上述持久性来量化它们的“重要性”。然后,将以太低的持久性过滤掉所有岛屿。但是,在您的示例中,每个岛(即每个局部最大值)都是您要寻找的峰值。

Python代码可以在这里找到。


16

物理学家已经对该问题进行了深入研究。在ROOT中有一个很好的实现。查看TSpectrum类(尤其是TSpectrum2您的案例的)和它们的文档。

参考文献:

  1. M.Morhac等人:多维重合伽马射线光谱的背景消除方法。物理研究中的核仪器和方法A 401(1997)113-132。
  2. M.Morhac等:有效的一维和二维金反卷积及其在伽马射线光谱分解中的应用。物理研究中的核仪器和方法A 401(1997)385-408。
  3. M.Morhac等人:多维重合伽马射线光谱中的峰鉴定。《研究物理中的核仪器与方法》,A 443(2000),108-125。

...对于那些无权订阅NIM的用户:


为了浏览这篇文章,它似乎确实描述了与我在这里尝试的数据处理相同的数据,但是我担心它大大超过了我的编程技能:(
Ivo Flipse

@Ivo:我从来没有尝试过自己实现它。我只是用ROOT。仍然有python绑定,但是要知道ROOT是一个非常沉重的包。
dmckee ---前主持人小猫,2010年

@Ivo Flipse:我同意dmckee的观点。您在其他答案中有很多有希望的线索。如果它们都失败了,并且您想花费一些时间,则可以深入研究ROOT,它将(可能)完成您需要的工作。我从未认识过尝试通过python绑定(而不是自然的C ++)学习ROOT的人,所以我希望你好运。
physicsmichael 2010年

13

这是一个想法:您计算图像的(离散)拉普拉斯算子。我希望它在最大值上(负)很大,比原​​始图像更具戏剧性。因此,最大值可能更容易找到。

这是另一个想法:如果您知道高压点的典型大小,则可以先通过使用相同大小的高斯将其卷积来平滑图像。这可以使您处理更简单的图像。


11

我的脑海中只有几个想法:

  • 进行扫描的梯度(导数),看看是否消除了错误的调用
  • 取局部最大值的最大值

您可能还想看看OpenCV,它有一个相当不错的Python API,并且可能有一些有用的功能。


对于渐变,您的意思是我应该计算斜率的陡度,一旦斜率超过一定值,我就知道有一个“峰值”?我尝试过此操作,但是与其他一些脚趾(8 N / cm)相比,一些脚趾只有非常低的峰值(1.2 N / cm)。那么我应该如何处理梯度非常低的峰呢?
Ivo Flipse 2010年

2
如果我不能直接使用渐变,过去对我有用的是查看渐变和最大值,例如,如果渐变是局部极值并且我处于局部最大值,则我处于利益。
克里斯·C(ChrisC)2010年

11

我确定您现在有足够的工作要做,但是我不禁建议使用k-means聚类方法。k-means是一种无监督的聚类算法,它将获取您的数据(任意数量的维度-我碰巧是在3D中进行此操作),并将其排列到具有不同边界的k个聚类中。这里很好,因为您确切知道这些犬(应该)有多少个脚趾。

此外,它是在Scipy中实现的,这真的很好(http://docs.scipy.org/doc/scipy/reference/cluster.vq.html)。

这是在空间上解析3D群集的方法的示例: 在此处输入图片说明

您想要做的有点不同(2D并包含压力值),但我仍然认为您可以尝试一下。


10

感谢您的原始数据。我在火车上,这是我所能到达的最大距离(我的停靠站即将来临)。我用正则表达式对您的txt文件进行了按摩,并将其放入带有一些JavaScript的html页面中以进行可视化。我在这里分享它是因为某些人(例如我自己)可能会发现它比python更容易被黑客攻击。

我认为一个好的方法将是尺度和旋转不变,而我的下一步将是研究高斯的混合。(每个爪垫都是高斯的中心)。

    <html>
<head>
    <script type="text/javascript" src="http://vis.stanford.edu/protovis/protovis-r3.2.js"></script> 
    <script type="text/javascript">
    var heatmap = [[[0,0,0,0,0,0,0,4,4,0,0,0,0],
[0,0,0,0,0,7,14,22,18,7,0,0,0],
[0,0,0,0,11,40,65,43,18,7,0,0,0],
[0,0,0,0,14,61,72,32,7,4,11,14,4],
[0,7,14,11,7,22,25,11,4,14,65,72,14],
[4,29,79,54,14,7,4,11,18,29,79,83,18],
[0,18,54,32,18,43,36,29,61,76,25,18,4],
[0,4,7,7,25,90,79,36,79,90,22,0,0],
[0,0,0,0,11,47,40,14,29,36,7,0,0],
[0,0,0,0,4,7,7,4,4,4,0,0,0]
],[
[0,0,0,4,4,0,0,0,0,0,0,0,0],
[0,0,11,18,18,7,0,0,0,0,0,0,0],
[0,4,29,47,29,7,0,4,4,0,0,0,0],
[0,0,11,29,29,7,7,22,25,7,0,0,0],
[0,0,0,4,4,4,14,61,83,22,0,0,0],
[4,7,4,4,4,4,14,32,25,7,0,0,0],
[4,11,7,14,25,25,47,79,32,4,0,0,0],
[0,4,4,22,58,40,29,86,36,4,0,0,0],
[0,0,0,7,18,14,7,18,7,0,0,0,0],
[0,0,0,0,4,4,0,0,0,0,0,0,0],
],[
[0,0,0,4,11,11,7,4,0,0,0,0,0],
[0,0,0,4,22,36,32,22,11,4,0,0,0],
[4,11,7,4,11,29,54,50,22,4,0,0,0],
[11,58,43,11,4,11,25,22,11,11,18,7,0],
[11,50,43,18,11,4,4,7,18,61,86,29,4],
[0,11,18,54,58,25,32,50,32,47,54,14,0],
[0,0,14,72,76,40,86,101,32,11,7,4,0],
[0,0,4,22,22,18,47,65,18,0,0,0,0],
[0,0,0,0,4,4,7,11,4,0,0,0,0],
],[
[0,0,0,0,4,4,4,0,0,0,0,0,0],
[0,0,0,4,14,14,18,7,0,0,0,0,0],
[0,0,0,4,14,40,54,22,4,0,0,0,0],
[0,7,11,4,11,32,36,11,0,0,0,0,0],
[4,29,36,11,4,7,7,4,4,0,0,0,0],
[4,25,32,18,7,4,4,4,14,7,0,0,0],
[0,7,36,58,29,14,22,14,18,11,0,0,0],
[0,11,50,68,32,40,61,18,4,4,0,0,0],
[0,4,11,18,18,43,32,7,0,0,0,0,0],
[0,0,0,0,4,7,4,0,0,0,0,0,0],
],[
[0,0,0,0,0,0,4,7,4,0,0,0,0],
[0,0,0,0,4,18,25,32,25,7,0,0,0],
[0,0,0,4,18,65,68,29,11,0,0,0,0],
[0,4,4,4,18,65,54,18,4,7,14,11,0],
[4,22,36,14,4,14,11,7,7,29,79,47,7],
[7,54,76,36,18,14,11,36,40,32,72,36,4],
[4,11,18,18,61,79,36,54,97,40,14,7,0],
[0,0,0,11,58,101,40,47,108,50,7,0,0],
[0,0,0,4,11,25,7,11,22,11,0,0,0],
[0,0,0,0,0,4,0,0,0,0,0,0,0],
],[
[0,0,4,7,4,0,0,0,0,0,0,0,0],
[0,0,11,22,14,4,0,4,0,0,0,0,0],
[0,0,7,18,14,4,4,14,18,4,0,0,0],
[0,4,0,4,4,0,4,32,54,18,0,0,0],
[4,11,7,4,7,7,18,29,22,4,0,0,0],
[7,18,7,22,40,25,50,76,25,4,0,0,0],
[0,4,4,22,61,32,25,54,18,0,0,0,0],
[0,0,0,4,11,7,4,11,4,0,0,0,0],
],[
[0,0,0,0,7,14,11,4,0,0,0,0,0],
[0,0,0,4,18,43,50,32,14,4,0,0,0],
[0,4,11,4,7,29,61,65,43,11,0,0,0],
[4,18,54,25,7,11,32,40,25,7,11,4,0],
[4,36,86,40,11,7,7,7,7,25,58,25,4],
[0,7,18,25,65,40,18,25,22,22,47,18,0],
[0,0,4,32,79,47,43,86,54,11,7,4,0],
[0,0,0,14,32,14,25,61,40,7,0,0,0],
[0,0,0,0,4,4,4,11,7,0,0,0,0],
],[
[0,0,0,0,4,7,11,4,0,0,0,0,0],
[0,4,4,0,4,11,18,11,0,0,0,0,0],
[4,11,11,4,0,4,4,4,0,0,0,0,0],
[4,18,14,7,4,0,0,4,7,7,0,0,0],
[0,7,18,29,14,11,11,7,18,18,4,0,0],
[0,11,43,50,29,43,40,11,4,4,0,0,0],
[0,4,18,25,22,54,40,7,0,0,0,0,0],
[0,0,4,4,4,11,7,0,0,0,0,0,0],
],[
[0,0,0,0,0,7,7,7,7,0,0,0,0],
[0,0,0,0,7,32,32,18,4,0,0,0,0],
[0,0,0,0,11,54,40,14,4,4,22,11,0],
[0,7,14,11,4,14,11,4,4,25,94,50,7],
[4,25,65,43,11,7,4,7,22,25,54,36,7],
[0,7,25,22,29,58,32,25,72,61,14,7,0],
[0,0,4,4,40,115,68,29,83,72,11,0,0],
[0,0,0,0,11,29,18,7,18,14,4,0,0],
[0,0,0,0,0,4,0,0,0,0,0,0,0],
]
];
</script>
</head>
<body>
    <script type="text/javascript+protovis">    
    for (var a=0; a < heatmap.length; a++) {
    var w = heatmap[a][0].length,
    h = heatmap[a].length;
var vis = new pv.Panel()
    .width(w * 6)
    .height(h * 6)
    .strokeStyle("#aaa")
    .lineWidth(4)
    .antialias(true);
vis.add(pv.Image)
    .imageWidth(w)
    .imageHeight(h)
    .image(pv.Scale.linear()
        .domain(0, 99, 100)
        .range("#000", "#fff", '#ff0a0a')
        .by(function(i, j) heatmap[a][j][i]));
vis.render();
}
</script>
  </body>
</html>

替代文字


1
我认为这是一个概念证明,建议的高斯技术可以奏效,现在,只要有人可以用Python证明它即可;-)
Ivo Flipse 2010年

8

物理学家的解决方案:
定义5个由其位置标识的爪标记,X_i并以随机位置初始化它们。定义一些能量函数,将对标记在脚掌位置的奖励与对标记重叠的惩罚相结合;比方说:

E(X_i;S)=-Sum_i(S(X_i))+alfa*Sum_ij (|X_i-Xj|<=2*sqrt(2)?1:0)

S(X_i)是2x2平方左右的平均力X_ialfa是实验达到峰值的参数)

现在是时候做一些Metropolis-Hastings魔术了:
1.选择随机标记并将其沿随机方向移动一个像素。
2.计算dE,此移动引起的能量差。
3.从0-1获得一个统一的随机数,并将其称为r。
4.如果dE<0exp(-beta*dE)>r,接受移动并转到1;否则,转到1。如果不是,请撤消移动并转到1。
应该重复这一步骤,直到标记会聚到爪子上为止。Beta控制扫描以优化权衡,因此也应通过实验进行优化;随着模拟时间(模拟退火)的增加,它也可以不断增加。


想要证明这在我的示例中如何工作?由于我真的不喜欢高级数学,因此我已经很难理解您提出的公式了:(
Ivo Flipse 2010年

1
这是高中数学,可能我的记法只是模糊不清。我有检查计划,敬请期待。
mbq 2010年

4
我是粒子物理学家。长期以来,我们学科中的首选软件工具称为PAW,它具有与图相关的实体,称为“标记”。您可以想象我在头几回发现这个答案有多么令人困惑...
dmckee ---前主持人小猫2010年

6

这是我对大型望远镜进行类似操作时使用的另一种方法:

1)搜索最高像素。有了该值后,请在该值附近搜索2x2的最佳拟合(也许使2x2的总和最大化),或者在以最高像素为中心的4x4子区域内进行2d高斯拟合。

然后将您发现的2x2像素在峰中心周围设为零(或3x3)

返回1)并重复直到最高峰降到噪声阈值以下,或者您拥有了所有需要的脚趾


愿意分享一个这样做的代码示例吗?我可以按照你想要做什么,但不知道如何自己的代码
伊沃Flipse

实际上,我来自与Matlab的合作,因此对您有所帮助。但是,如果您使用真正的外部函数,可能很难用Python复制它
Ivo Flipse 2010年

6

如果您能够创建一些训练数据,则可能值得尝试使用神经网络...但是,这需要手工标注许多示例。


如果值得麻烦,我不介意手动注释一个大样本。我的问题是:如何实现此目标,因为我对神经网络编程一无所知
Ivo Flipse 2010年

6

粗略的轮廓...

您可能希望使用连接的组件算法来隔离每个爪区域。Wiki在此处对此有一个不错的描述(带有一些代码):http : //en.wikipedia.org/wiki/Connected_Component_Labeling

您必须决定是使用4个连接还是8个连接。就个人而言,对于大多数问题,我更喜欢6连通性。无论如何,一旦将每个“爪印”分离为一个相连的区域,就应该足够容易地遍历该区域并找到最大值。一旦找到最大值,就可以迭代放大区域,直到达到预定阈值,以将其识别为给定的“脚趾”。

这里一个微妙的问题是,一旦您开始使用计算机视觉技术将某事物识别为右/左/前/后爪,并且开始查看各个脚趾,就必须开始考虑旋转,偏斜和平移。这是通过分析所谓的“时刻”来完成的。在视觉应用中需要考虑一些不同的时刻:

中心矩:平移不变归一化矩:缩放和平移不变hu矩:平移,尺度和旋转不变

通过在Wiki上搜索“图像时刻”可以找到有关时刻的更多信息。



4

看来您可以使用jetxee的算法作弊。他发现前三个脚趾很好,您应该能够猜出第四个脚趾是基于哪个脚趾。


4

有趣的问题。我尝试的解决方案如下。

  1. 应用低通滤波器,例如与2D高斯蒙版进行卷积。这将为您提供一堆(可能但不一定是浮点数)值。

  2. 使用每个爪垫(或脚趾)的已知近似半径执行2D非最大抑制。

这应该为您提供最大的职位,而不会使多个候选职位靠在一起。为了明确起见,步骤1中的遮罩半径也应与步骤2中使用的半径相似。该半径可以选择,或者兽医可以事先对其进行明确测量(随年龄/品种/等的不同而不同)。

建议的某些解决方案(均值漂移,神经网络等)可能会在某种程度上起作用,但过于复杂且可能不理想。


我对卷积矩阵和高斯滤波器有0的经验,那么您想证明它如何在我的示例中起作用吗?
Ivo Flipse 2010年

3

好吧,这是一些简单但效率不高的代码,但是对于这种大小的数据集来说,这很好。

import numpy as np
grid = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0.4,0.4,0.4,0,0,0],
              [0,0,0,0,0.4,1.4,1.4,1.8,0.7,0,0,0,0,0],
              [0,0,0,0,0.4,1.4,4,5.4,2.2,0.4,0,0,0,0],
              [0,0,0.7,1.1,0.4,1.1,3.2,3.6,1.1,0,0,0,0,0],
              [0,0.4,2.9,3.6,1.1,0.4,0.7,0.7,0.4,0.4,0,0,0,0],
              [0,0.4,2.5,3.2,1.8,0.7,0.4,0.4,0.4,1.4,0.7,0,0,0],
              [0,0,0.7,3.6,5.8,2.9,1.4,2.2,1.4,1.8,1.1,0,0,0],
              [0,0,1.1,5,6.8,3.2,4,6.1,1.8,0.4,0.4,0,0,0],
              [0,0,0.4,1.1,1.8,1.8,4.3,3.2,0.7,0,0,0,0,0],
              [0,0,0,0,0,0.4,0.7,0.4,0,0,0,0,0,0]])

arr = []
for i in xrange(grid.shape[0] - 1):
    for j in xrange(grid.shape[1] - 1):
        tot = grid[i][j] + grid[i+1][j] + grid[i][j+1] + grid[i+1][j+1]
        arr.append([(i,j),tot])

best = []

arr.sort(key = lambda x: x[1])

for i in xrange(5):
    best.append(arr.pop())
    badpos = set([(best[-1][0][0]+x,best[-1][0][1]+y)
                  for x in [-1,0,1] for y in [-1,0,1] if x != 0 or y != 0])
    for j in xrange(len(arr)-1,-1,-1):
        if arr[j][0] in badpos:
            arr.pop(j)


for item in best:
    print grid[item[0][0]:item[0][0]+2,item[0][1]:item[0][1]+2]

我基本上只是用左上角的位置和每个2x2正方形的和组成一个数组,然后按和对它进行排序。然后,我从争用中取出具有最高总和的2x2正方形,将其放入best数组中,并删除所有其他2x2正方形,这些正方形使用了刚刚删除的2x2正方形的任何部分。

除了最后一个爪子(在第一张图片的最右端具有最小和的爪子)之外,它似乎工作正常,结果发现还有另外两个合格的2x2平方和,它们的总和等于彼此)。其中一个仍然从您的2x2正方形中选择一个正方形,但另一个在左侧。幸运的是,幸运的是,我们可以选择更多您想要的东西,但这可能需要使用其他一些思想来始终获得您真正想要的东西。


我认为您的结果与@Jextee的答案相同。或者至少从我看来,似乎对其进行了测试。
Ivo Flipse 2010年


1

也许在这里一个简单的方法就足够了:建立飞机上所有2x2正方形的列表,并按它们的总和(降序排列)进行排序。

首先,在“爪子列表”中选择价值最高的正方形。然后,迭代选择不与任何先前找到的正方形相交的次佳正方形中的4个。


我实际上列出了所有2x2总和的列表,但是当我订购它们时,我不知道如何迭代比较它们。我的问题是,当我对它进行排序时,我失去了对坐标的跟踪。也许我可以将它们粘贴在字典中,并以坐标为键。
Ivo Flipse 2010年

是的,将需要某种字典。我会假设您对网格的表示已经是某种字典。
约翰内斯·查拉

好了,您在上面看到的图像是一个numpy数组。其余的当前存储在多维列表中。最好停止这样做,尽管我对字典不那么熟悉
Ivo Flipse 2010年

1

天文学和宇宙学界提供了许多广泛的软件-这是历史上和当前的重要研究领域。

如果您不是天文学家,请不要惊慌-有些易于在野外使用。例如,您可以使用astropy / photutils:

https://photutils.readthedocs.io/en/stable/detection.html#local-peak-detection

[在这里重复简短的示例代码似乎有点不礼貌。]

下面列出了可能不感兴趣的技术/软件包/链接的不完整列表,并略有偏差。请在注释中添加更多内容,并在必要时更新此答案。当然,要在精度与计算资源之间进行权衡。[老实说,在这样的单个答案中有太多的例子无法给出代码示例,所以我不确定这个答案是否可行。]

源提取器https://www.astromatic.net/software/sextractor

MultiNest https://github.com/farhanferoz/MultiNest [+ pyMultiNest]

ASKAP / EMU寻源挑战:https ://arxiv.org/abs/1509.03931

您也可以搜索Planck和/或WMAP源提取挑战。

...


0

如果逐步进行操作怎么办:首先找到全局最大值,然后根据需要处理周围点的值,然后将找到的区域设置为零,然后对下一个重复。


嗯,将其设置为零将至少将其从任何进一步的计算中删除,这将很有用。
Ivo Flipse 2010年

除了将其设置为零以外,您还可以使用手工选择的参数来计算高斯函数,并从原始压力读数中减去找到的值。因此,如果脚趾在按压传感器,则可以通过找到最高的按压点来减少该脚趾对传感器的影响,从而消除具有较高压力值的相邻单元格。 en.wikipedia.org/wiki/File:Gaussian_2d.png
Daniyar 2010年

愿意根据我的样本数据@Daniyar展示示例吗?由于我真的不熟悉这种数据处理
Ivo Flipse 2010年

0

我不确定这是否能回答问题,但似乎您可以寻找没有邻居的n个最高峰。

这是要点。 请注意,它在Ruby中,但是思路应该很清楚。

require 'pp'

NUM_PEAKS = 5
NEIGHBOR_DISTANCE = 1

data = [[1,2,3,4,5],
        [2,6,4,4,6],
        [3,6,7,4,3],
       ]

def tuples(matrix)
  tuples = []
  matrix.each_with_index { |row, ri|
    row.each_with_index { |value, ci|
      tuples << [value, ri, ci]
    }
  }
  tuples
end

def neighbor?(t1, t2, distance = 1)
  [1,2].each { |axis|
    return false if (t1[axis] - t2[axis]).abs > distance
  }
  true
end

# convert the matrix into a sorted list of tuples (value, row, col), highest peaks first
sorted = tuples(data).sort_by { |tuple| tuple.first }.reverse

# the list of peaks that don't have neighbors
non_neighboring_peaks = []

sorted.each { |candidate|
  # always take the highest peak
  if non_neighboring_peaks.empty?
    non_neighboring_peaks << candidate
    puts "took the first peak: #{candidate}"
  else
    # check that this candidate doesn't have any accepted neighbors
    is_ok = true
    non_neighboring_peaks.each { |accepted|
      if neighbor?(candidate, accepted, NEIGHBOR_DISTANCE)
        is_ok = false
        break
      end
    }
    if is_ok
      non_neighboring_peaks << candidate
      puts "took #{candidate}"
    else
      puts "denied #{candidate}"
    end
  end
}

pp non_neighboring_peaks

我将尝试看看是否可以将其转换为Python代码:-)
Ivo Flipse 2010年

如果长度合理,请在帖子本身中包含代码,而不是链接到要点。
2012年
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.