TensorFlow:InternalError:Blas SGEMM启动失败


71

当我跑步时sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})我得到InternalError: Blas SGEMM launch failed。这是完整的错误和堆栈跟踪:

InternalErrorTraceback (most recent call last)
<ipython-input-9-a3261a02bdce> in <module>()
      1 batch_xs, batch_ys = mnist.train.next_batch(100)
----> 2 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
    338     try:
    339       result = self._run(None, fetches, feed_dict, options_ptr,
--> 340                          run_metadata_ptr)
    341       if run_metadata:
    342         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
    562     try:
    563       results = self._do_run(handle, target_list, unique_fetches,
--> 564                              feed_dict_string, options, run_metadata)
    565     finally:
    566       # The movers are no longer used. Delete them.

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
    635     if handle is None:
    636       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 637                            target_list, options, run_metadata)
    638     else:
    639       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
    657       # pylint: disable=protected-access
    658       raise errors._make_specific_exception(node_def, op, error_message,
--> 659                                             e.code)
    660       # pylint: enable=protected-access
    661 

InternalError: Blas SGEMM launch failed : a.shape=(100, 784), b.shape=(784, 10), m=100, n=10, k=784
     [[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_4, Variable/read)]]
Caused by op u'MatMul', defined at:
  File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main
    "__main__", fname, loader, pkg_name)
  File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
    exec code in run_globals
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "/usr/local/lib/python2.7/dist-packages/traitlets/config/application.py", line 596, in launch_instance
    app.start()
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelapp.py", line 442, in start
    ioloop.IOLoop.instance().start()
  File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/ioloop.py", line 162, in start
    super(ZMQIOLoop, self).start()
  File "/usr/local/lib/python2.7/dist-packages/tornado/ioloop.py", line 883, in start
    handler_func(fd_obj, events)
  File "/usr/local/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 391, in execute_request
    user_expressions, allow_stdin)
  File "/usr/local/lib/python2.7/dist-packages/ipykernel/ipkernel.py", line 199, in do_execute
    shell.run_cell(code, store_history=store_history, silent=silent)
  File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2723, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2825, in run_ast_nodes
    if self.run_code(code, result):
  File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-4-d7414c4b6213>", line 4, in <module>
    y = tf.nn.softmax(tf.matmul(x, W) + b)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 1036, in matmul
    name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 911, in _mat_mul
    transpose_b=transpose_b, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2154, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1154, in __init__
    self._traceback = _extract_stack()

堆栈:EC2 g2.8xlarge机器,Ubuntu 14.04


我怀疑这是GPU内存问题。我跑了mnist_softmax.py(从tensorflow页面获取)。在装有GTX950(2Gb vram)的PC上,出现此错误。在装有Quadro M2000M(4Gb vram)的笔记本电脑上,它运行良好。这两个系统都使用带有蟒蛇3.5和tensorflow 1.0的anaconda
mark jay

Answers:


104

旧问题,但可能会帮助其他人。
尝试关闭在其他进程中处于活动状态的交互式会话(如果使用IPython Notebook-只需重新启动内核)。这对我有帮助!

此外,在实验过程中,我使用以下代码关闭了该内核中的本地会话:

if 'session' in locals() and session is not None:
    print('Close interactive session')
    session.close()

9

我遇到了这个问题,并通过设置解决了它allow_soft_placement=Truegpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3),其特异性地限定被使用的GPU的存储器部分。我想这有助于避免两个张量流进程争夺GPU内存。

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
sess = tf.Session(config=tf.ConfigProto(
  allow_soft_placement=True, log_device_placement=True))

4

运行Tensorflow Distributed时出现此错误。您是否检查了是否有任何工人正在报告CUDA_OUT_OF_MEMORY错误?如果是这种情况,则可能与放置权重和偏差变量的位置有关。例如

with tf.device("/job:paramserver/task:0/cpu:0"):
   W = weight_variable([input_units, num_hidden_units])       
   b = bias_variable([num_hidden_units])             

4

我的环境是Python 3.5,Tensorflow 0.12和Windows 10(无Docker)。我正在用CPU和GPU训练神经网络。InternalError: Blas SGEMM launch failed每当在GPU中进行训练时,我都会遇到相同的错误。

我找不到发生此错误的原因,但通过避免tensorflow函数,我设法在GPU中运行代码tensorflow.contrib.slim.one_hot_encoding()。相反,我在numpy(输入和输出变量)中进行了一次热编码操作。

以下代码重现该错误和修复程序。这是y = x ** 2使用梯度下降学习功能的最小设置。

import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim

def test_one_hot_encoding_using_tf():

    # This function raises the "InternalError: Blas SGEMM launch failed" when run in the GPU

    # Initialize
    tf.reset_default_graph()
    input_size = 10
    output_size = 100
    input_holder = tf.placeholder(shape=[1], dtype=tf.int32, name='input')
    output_holder = tf.placeholder(shape=[1], dtype=tf.int32, name='output')

    # Define network
    input_oh = slim.one_hot_encoding(input_holder, input_size)
    output_oh = slim.one_hot_encoding(output_holder, output_size)
    W1 = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01))
    output_v = tf.matmul(input_oh, W1)
    output_v = tf.reshape(output_v, [-1])

    # Define updates
    loss = tf.reduce_sum(tf.square(output_oh - output_v))
    trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
    update_model = trainer.minimize(loss)

    # Optimize
    init = tf.initialize_all_variables()
    steps = 1000

    # Force CPU/GPU
    config = tf.ConfigProto(
        # device_count={'GPU': 0}  # uncomment this line to force CPU
    )

    # Launch the tensorflow graph
    with tf.Session(config=config) as sess:
        sess.run(init)

        for step_i in range(steps):

            # Get sample
            x = np.random.randint(0, 10)
            y = np.power(x, 2).astype('int32')

            # Update
            _, l = sess.run([update_model, loss], feed_dict={input_holder: [x], output_holder: [y]})

        # Check model
        print('Final loss: %f' % l)

def test_one_hot_encoding_no_tf():

    # This function does not raise the "InternalError: Blas SGEMM launch failed" when run in the GPU

    def oh_encoding(label, num_classes):
        return np.identity(num_classes)[label:label + 1].astype('int32')

    # Initialize
    tf.reset_default_graph()
    input_size = 10
    output_size = 100
    input_holder = tf.placeholder(shape=[1, input_size], dtype=tf.float32, name='input')
    output_holder = tf.placeholder(shape=[1, output_size], dtype=tf.float32, name='output')

    # Define network
    W1 = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01))
    output_v = tf.matmul(input_holder, W1)
    output_v = tf.reshape(output_v, [-1])

    # Define updates
    loss = tf.reduce_sum(tf.square(output_holder - output_v))
    trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
    update_model = trainer.minimize(loss)

    # Optimize
    init = tf.initialize_all_variables()
    steps = 1000

    # Force CPU/GPU
    config = tf.ConfigProto(
        # device_count={'GPU': 0}  # uncomment this line to force CPU
    )

    # Launch the tensorflow graph
    with tf.Session(config=config) as sess:
        sess.run(init)

        for step_i in range(steps):

            # Get sample
            x = np.random.randint(0, 10)
            y = np.power(x, 2).astype('int32')

            # One hot encoding
            x = oh_encoding(x, 10)
            y = oh_encoding(y, 100)

            # Update
            _, l = sess.run([update_model, loss], feed_dict={input_holder: x, output_holder: y})

        # Check model
        print('Final loss: %f' % l)

3

如果您使用的是linux,则可能无法完全释放gpu,请尝试使用“ ps -ef | grep python”查看使用GPU的作业。然后杀死他们


2

就我而言,我打开了2个python控制台,都使用keras / tensorflow。当我关闭旧的控制台(前一天忘记了)时,一切开始正常工作。

因此,最好检查一下是否没有多个控制台/进程占用GPU。



1

就我而言

首先,我跑步

康达干净-全部

清理压缩包和未使用的软件包。

然后,我重新启动IDE(在这种情况下为Pycharm),它运行良好。环境:Anaconda python 3.6,Windows 10 64bit。我通过anaconda网站上提供的命令安装tensorflow-gpu。


1

对我来说,当我尝试运行多个tensorflow进程(例如2个)并且它们都需要访问GPU资源时,我遇到了这个问题。

一个简单的解决方案是确保一次仅运行一个tensorflow进程。

有关更多详细信息,请参见此处

需要明确的是,tensorflow将尝试(默认情况下)消耗所有可用的GPU。它不能与其他也处于活动状态的程序一起运行。闭幕。如果这实际上是另一个问题,请随时重新打开。


1

2.0兼容答案:为erko的答案提供2.0代码,以使社区受益。

session = tf.compat.v1.Session()

if 'session' in locals() and session is not None:
    print('Close interactive session')
    session.close()

0

与pytest-xdist并行运行Keras CuDNN测试时,遇到了此错误。解决方案是按顺序运行它们。


0

对我来说,在使用Keras时遇到了这个错误,而Tensorflow是后端。这是因为Anaconda的深度学习环境未正确激活,结果Tensorflow也未正确启动。自上次激活深度学习环境(称为dl)以来,我注意到了这一点,提示在Anaconda Prompt中更改为:

(dl) C:\Users\georg\Anaconda3\envs\dl\etc\conda\activate.d>set "KERAS_BACKEND=tensorflow"

虽然只有dl那时。因此,要摆脱上述错误,我要做的是关闭我的jupyter笔记本和Anaconda提示符,然后重新启动几次。


0

我最近将操作系统更改为Windows 10后遇到此错误,使用Windows 7之前从未遇到过此错误。

如果我在运行另一个GPU程序时加载我的GPU Tensorflow模型,则会发生错误。这是我的JCuda模型作为套接字服务器加载的,不大。如果我关闭其他GPU程序,则可以非常成功地加载此Tensorflow模型。

这个JCuda程序根本不是很大,只有70M左右,相比之下,这个Tensorflow模型超过500M甚至更大。但是我正在使用1080 ti,它有很多内存。因此,这可能不是内存不足的问题,并且可能是Tensorflow有关OS或Cuda的一些棘手的内部问题。(PS:我使用的是Cuda 8.0.44版本,尚未下载更新的版本。)


0

重新启动Jupyter进程还不够。我必须重新启动计算机。


0

就我而言,在单独的服务器中打开Jupyter Notebooks就足够了。

仅当我尝试在同一服务器上使用多个张量流/ keras模型时,此错误才会发生。打开一个笔记本,执行它,然后关闭并尝试打开另一个笔记本,都没有关系。如果将它们加载到同一Jupyter服务器中,则始终会发生错误。


-1

就我而言,libcublas.so位于其下的网络文件系统只是死掉了。该节点已重新启动,一切都很好。只是向数据集添加另一个点。

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.