Java中的稀疏矩阵/数组


69

我正在开发一个用Java编写的项目,该项目要求我建立一个非常大的2-D稀疏数组。非常稀疏,如果有所作为。无论如何:此应用程序最关键的方面是时间效率(假定内存负载,尽管不是无限的以至于我无法使用标准的二维数组-关键范围在两个维度上都在数十亿之内) )。

在数组的千亿个单元中,将有数十万个单元包含一个对象。我需要能够非常快速地修改单元格内容。

无论如何:有人知道为此目的特别好的图书馆吗?它必须是伯克利,LGPL或类似的许可证(没有GPL,因为该产品不能完全开源)。或者,如果只有一种非常简单的方法来制作自制的稀疏数组对象,那也可以。

我正在考虑MTJ,但尚未听到有关其质量的任何意见。


这是您可能感兴趣的一篇文章,其中涉及矩阵计算的数据结构,包括稀疏数组:http : //citeseerx.ist.psu.edu/viewdoc/summary ? doi= 10.1.1.13.7544您可以下载该论文为PDF或PS。它也包括源代码。
马克·诺瓦科夫斯基

也许柯尔特是有帮助的。它提供了一个稀疏矩阵实现。
raupach

我刚使用Trove,它在使用int-> int映射(用于实现稀疏矩阵)时提供了比Colt更好的性能。
费德里科

Answers:


73

使用散列图构建的稀疏数组对于频繁读取的数据效率很低。最有效的实现方式是使用Trie,该Trie允许访问分布有段的单个向量。

Trie可以通过仅执行只读两个数组索引来获取元素存储的有效位置,或知道基础存储中是否不存在元素,从而计算表中是否存在元素。

它还可以为稀疏数组的默认值在后备存储中提供默认位置,因此您不需要对返回的索引进行任何测试,因为Trie保证所有可能的源索引都将至少映射到默认值在后备存储中的位置(您经常会在其中存储零,空字符串或空对象)。

存在支持快速更新Tries的实现,并通过一个“ compact()”操作在多个操作结束时优化后备存储的大小。尝试比哈希映射要快得多,因为它们不需要任何复杂的哈希函数,并且不需要处理读取冲突(对于哈希映射,读取和写入都具有冲突,这需要循环以跳至下一个候选职位,并对其进行测试以比较有效来源索引...)

此外,Java Hashmaps只能在对象上建立索引,并且为每个散列的源索引创建一个Integer对象(每次读取都需要创建该对象,而不仅仅是写入)在内存操作方面是昂贵的,因为它会强调垃圾收集器。

我真的希望JRE包括IntegerTrieMap <Object>作为慢速HashMap <Integer,Object>的默认实现或LongTrieMap <Object>作为慢速HashMap <Long,Object>的默认实现...但这是仍然不是这样。



您可能想知道什么是特里?

它只是一小部分整数数组(范围小于矩阵坐标的整个范围),可以将坐标映射到向量中的整数位置。

例如,假设您想要一个1024 * 1024矩阵,其中仅包含一些非零值。与其将矩阵存储在包含1024 * 1024个元素(超过100万个)的数组中,不如将其拆分为大小为16 * 16的子范围,而只需要64 * 64个这样的子范围即可。

在这种情况下,Trie索引将仅包含64 * 64整数(4096),并且至少将有16 * 16数据元素(包含默认零或稀疏矩阵中找到的最常见子范围)。

并且用于存储值的向量对于彼此相等的子范围将仅包含1个副本(其中大多数为零,它们将由相同的子范围表示)。

因此matrix[i][j],您可以使用类似以下语法,而不是使用类似的语法:

trie.values[trie.subrangePositions[(i & ~15) + (j >> 4)] +
            ((i & 15) << 4) + (j & 15)]

使用trie对象的访问方法将可以更方便地处理它。

这是一个内置在注释类中的示例(我希望它可以编译成OK(简化);如果有错误要纠正,请通知我):

/**
 * Implement a sparse matrix. Currently limited to a static size
 * (<code>SIZE_I</code>, <code>SIZE_I</code>).
 */
public class DoubleTrie {

    /* Matrix logical options */        
    public static final int SIZE_I = 1024;
    public static final int SIZE_J = 1024;
    public static final double DEFAULT_VALUE = 0.0;

    /* Internal splitting options */
    private static final int SUBRANGEBITS_I = 4;
    private static final int SUBRANGEBITS_J = 4;

    /* Internal derived splitting constants */
    private static final int SUBRANGE_I =
        1 << SUBRANGEBITS_I;
    private static final int SUBRANGE_J =
        1 << SUBRANGEBITS_J;
    private static final int SUBRANGEMASK_I =
        SUBRANGE_I - 1;
    private static final int SUBRANGEMASK_J =
        SUBRANGE_J - 1;
    private static final int SUBRANGE_POSITIONS =
        SUBRANGE_I * SUBRANGE_J;

    /* Internal derived default values for constructors */
    private static final int SUBRANGES_I =
        (SIZE_I + SUBRANGE_I - 1) / SUBRANGE_I;
    private static final int SUBRANGES_J =
        (SIZE_J + SUBRANGE_J - 1) / SUBRANGE_J;
    private static final int SUBRANGES =
        SUBRANGES_I * SUBRANGES_J;
    private static final int DEFAULT_POSITIONS[] =
        new int[SUBRANGES](0);
    private static final double DEFAULT_VALUES[] =
        new double[SUBRANGE_POSITIONS](DEFAULT_VALUE);

    /* Internal fast computations of the splitting subrange and offset. */
    private static final int subrangeOf(
            final int i, final int j) {
        return (i >> SUBRANGEBITS_I) * SUBRANGE_J +
               (j >> SUBRANGEBITS_J);
    }
    private static final int positionOffsetOf(
            final int i, final int j) {
        return (i & SUBRANGEMASK_I) * MAX_J +
               (j & SUBRANGEMASK_J);
    }

    /**
     * Utility missing in java.lang.System for arrays of comparable
     * component types, including all native types like double here.
     */
    public static final int arraycompare(
            final double[] values1, final int position1,
            final double[] values2, final int position2,
            final int length) {
        if (position1 >= 0 && position2 >= 0 && length >= 0) {
            while (length-- > 0) {
                double value1, value2;
                if ((value1 = values1[position1 + length]) !=
                    (value2 = values2[position2 + length])) {
                    /* Note: NaN values are different from everything including
                     * all Nan values; they are are also neigher lower than nor
                     * greater than everything including NaN. Note that the two
                     * infinite values, as well as denormal values, are exactly
                     * ordered and comparable with <, <=, ==, >=, >=, !=. Note
                     * that in comments below, infinite is considered "defined".
                     */
                    if (value1 < value2)
                        return -1;        /* defined < defined. */
                    if (value1 > value2)
                        return 1;         /* defined > defined. */
                    if (value1 == value2)
                        return 0;         /* defined == defined. */
                    /* One or both are NaN. */
                    if (value1 == value1) /* Is not a NaN? */
                        return -1;        /* defined < NaN. */
                    if (value2 == value2) /* Is not a NaN? */
                        return 1;         /* NaN > defined. */
                    /* Otherwise, both are NaN: check their precise bits in
                     * range 0x7FF0000000000001L..0x7FFFFFFFFFFFFFFFL
                     * including the canonical 0x7FF8000000000000L, or in
                     * range 0xFFF0000000000001L..0xFFFFFFFFFFFFFFFFL.
                     * Needed for sort stability only (NaNs are otherwise
                     * unordered).
                     */
                    long raw1, raw2;
                    if ((raw1 = Double.doubleToRawLongBits(value1)) !=
                        (raw2 = Double.doubleToRawLongBits(value2)))
                        return raw1 < raw2 ? -1 : 1;
                    /* Otherwise the NaN are strictly equal, continue. */
                }
            }
            return 0;
        }
        throw new ArrayIndexOutOfBoundsException(
                "The positions and length can't be negative");
    }

    /**
     * Utility shortcut for comparing ranges in the same array.
     */
    public static final int arraycompare(
            final double[] values,
            final int position1, final int position2,
            final int length) {
        return arraycompare(values, position1, values, position2, length);
    }

    /**
     * Utility missing in java.lang.System for arrays of equalizable
     * component types, including all native types like double here.
     */ 
    public static final boolean arrayequals(
            final double[] values1, final int position1,
            final double[] values2, final int position2,
            final int length) {
        return arraycompare(values1, position1, values2, position2, length) ==
            0;
    }

    /**
     * Utility shortcut for identifying ranges in the same array.
     */
    public static final boolean arrayequals(
            final double[] values,
            final int position1, final int position2,
            final int length) {
        return arrayequals(values, position1, values, position2, length);
    }

    /**
     * Utility shortcut for copying ranges in the same array.
     */
    public static final void arraycopy(
            final double[] values,
            final int srcPosition, final int dstPosition,
            final int length) {
        arraycopy(values, srcPosition, values, dstPosition, length);
    }

    /**
     * Utility shortcut for resizing an array, preserving values at start.
     */
    public static final double[] arraysetlength(
            double[] values,
            final int newLength) {
        final int oldLength =
            values.length < newLength ? values.length : newLength;
        System.arraycopy(values, 0, values = new double[newLength], 0,
            oldLength);
        return values;
    }

    /* Internal instance members. */
    private double values[];
    private int subrangePositions[];
    private bool isSharedValues;
    private bool isSharedSubrangePositions;

    /* Internal method. */
    private final reset(
            final double[] values,
            final int[] subrangePositions) {
        this.isSharedValues =
            (this.values = values) == DEFAULT_VALUES;
        this.isSharedsubrangePositions =
            (this.subrangePositions = subrangePositions) ==
                DEFAULT_POSITIONS;
    }

    /**
     * Reset the matrix to fill it with the same initial value.
     *
     * @param initialValue  The value to set in all cell positions.
     */
    public reset(final double initialValue = DEFAULT_VALUE) {
        reset(
            (initialValue == DEFAULT_VALUE) ? DEFAULT_VALUES :
                new double[SUBRANGE_POSITIONS](initialValue),
            DEFAULT_POSITIONS);
    }

    /**
     * Default constructor, using single default value.
     *
     * @param initialValue  Alternate default value to initialize all
     *                      positions in the matrix.
     */
    public DoubleTrie(final double initialValue = DEFAULT_VALUE) {
        this.reset(initialValue);
    }

    /**
     * This is a useful preinitialized instance containing the
     * DEFAULT_VALUE in all cells.
     */
    public static DoubleTrie DEFAULT_INSTANCE = new DoubleTrie();

    /**
     * Copy constructor. Note that the source trie may be immutable
     * or not; but this constructor will create a new mutable trie
     * even if the new trie initially shares some storage with its
     * source when that source also uses shared storage.
     */
    public DoubleTrie(final DoubleTrie source) {
        this.values = (this.isSharedValues =
            source.isSharedValues) ?
            source.values :
            source.values.clone();
        this.subrangePositions = (this.isSharedSubrangePositions =
            source.isSharedSubrangePositions) ?
            source.subrangePositions :
            source.subrangePositions.clone());
    }

    /**
     * Fast indexed getter.
     *
     * @param i  Row of position to set in the matrix.
     * @param j  Column of position to set in the matrix.
     * @return   The value stored in matrix at that position.
     */
    public double getAt(final int i, final int j) {
        return values[subrangePositions[subrangeOf(i, j)] +
                      positionOffsetOf(i, j)];
    }

    /**
     * Fast indexed setter.
     *
     * @param i      Row of position to set in the sparsed matrix.
     * @param j      Column of position to set in the sparsed matrix.
     * @param value  The value to set at this position.
     * @return       The passed value.
     * Note: this does not compact the sparsed matric after setting.
     * @see compact(void)
     */
    public double setAt(final int i, final int i, final double value) {
       final int subrange       = subrangeOf(i, j);
       final int positionOffset = positionOffsetOf(i, j);
       // Fast check to see if the assignment will change something.
       int subrangePosition, valuePosition;
       if (Double.compare(
               values[valuePosition =
                   (subrangePosition = subrangePositions[subrange]) +
                   positionOffset],
               value) != 0) {
               /* So we'll need to perform an effective assignment in values.
                * Check if the current subrange to assign is shared of not.
                * Note that we also include the DEFAULT_VALUES which may be
                * shared by several other (not tested) trie instances,
                * including those instanciated by the copy contructor. */
               if (isSharedValues) {
                   values = values.clone();
                   isSharedValues = false;
               }
               /* Scan all other subranges to check if the position in values
                * to assign is shared by another subrange. */
               for (int otherSubrange = subrangePositions.length;
                       --otherSubrange >= 0; ) {
                   if (otherSubrange != subrange)
                       continue; /* Ignore the target subrange. */
                   /* Note: the following test of range is safe with future
                    * interleaving of common subranges (TODO in compact()),
                    * even though, for now, subranges are sharing positions
                    * only between their common start and end position, so we
                    * could as well only perform the simpler test <code>
                    * (otherSubrangePosition == subrangePosition)</code>,
                    * instead of testing the two bounds of the positions
                    * interval of the other subrange. */
                   int otherSubrangePosition;
                   if ((otherSubrangePosition =
                           subrangePositions[otherSubrange]) >=
                           valuePosition &&
                           otherSubrangePosition + SUBRANGE_POSITIONS <
                           valuePosition) {
                       /* The target position is shared by some other
                        * subrange, we need to make it unique by cloning the
                        * subrange to a larger values vector, copying all the
                        * current subrange values at end of the new vector,
                        * before assigning the new value. This will require
                        * changing the position of the current subrange, but
                        * before doing that, we first need to check if the
                        * subrangePositions array itself is also shared
                        * between instances (including the DEFAULT_POSITIONS
                        * that should be preserved, and possible arrays
                        * shared by an external factory contructor whose
                        * source trie was declared immutable in a derived
                        * class). */
                       if (isSharedSubrangePositions) {
                           subrangePositions = subrangePositions.clone();
                           isSharedSubrangePositions = false;
                       }
                       /* TODO: no attempt is made to allocate less than a
                        * fully independant subrange, using possible
                        * interleaving: this would require scanning all
                        * other existing values to find a match for the
                        * modified subrange of values; but this could
                        * potentially leave positions (in the current subrange
                        * of values) unreferenced by any subrange, after the
                        * change of position for the current subrange. This
                        * scanning could be prohibitively long for each
                        * assignement, and for now it's assumed that compact()
                        * will be used later, after those assignements. */
                       values = setlengh(
                           values,
                           (subrangePositions[subrange] =
                            subrangePositions = values.length) +
                           SUBRANGE_POSITIONS);
                       valuePosition = subrangePositions + positionOffset;
                       break;
                   }
               }
               /* Now perform the effective assignment of the value. */
               values[valuePosition] = value;
           }
       }
       return value;
    }

    /**
     * Compact the storage of common subranges.
     * TODO: This is a simple implementation without interleaving, which
     * would offer a better data compression. However, interleaving with its
     * O(N²) complexity where N is the total length of values, should
     * be attempted only after this basic compression whose complexity is
     * O(n²) with n being SUBRANGE_POSITIIONS times smaller than N.
     */
    public void compact() {
        final int oldValuesLength = values.length;
        int newValuesLength = 0;
        for (int oldPosition = 0;
                 oldPosition < oldValuesLength;
                 oldPosition += SUBRANGE_POSITIONS) {
            int oldPosition = positions[subrange];
            bool commonSubrange = false;
            /* Scan values for possible common subranges. */
            for (int newPosition = newValuesLength;
                    (newPosition -= SUBRANGE_POSITIONS) >= 0; )
                if (arrayequals(values, newPosition, oldPosition,
                        SUBRANGE_POSITIONS)) {
                    commonSubrange = true;
                    /* Update the subrangePositions|] with all matching
                     * positions from oldPosition to newPosition. There may
                     * be several index to change, if the trie has already
                     * been compacted() before, and later reassigned. */
                    for (subrange = subrangePositions.length;
                         --subrange >= 0; )
                        if (subrangePositions[subrange] == oldPosition)
                            subrangePositions[subrange] = newPosition;
                    break;
                }
            if (!commonSubrange) {
                /* Move down the non-common values, if some previous
                 * subranges have been compressed when they were common.
                 */
                if (!commonSubrange && oldPosition != newValuesLength) {
                    arraycopy(values, oldPosition, newValuesLength,
                        SUBRANGE_POSITIONS);
                    /* Advance compressed values to preserve these new ones. */
                    newValuesLength += SUBRANGE_POSITIONS;
                }
            }
        }
        /* Check the number of compressed values. */
        if (newValuesLength < oldValuesLength) {
            values = values.arraysetlength(newValuesLength);
            isSharedValues = false;
        }
    }

}

注意:此代码不完整,因为它只能处理单个矩阵大小,并且其压缩器仅限于检测公共子范围,而不会交织它们。

另外,代码不会根据矩阵大小确定将矩阵划分为子范围(对于x或y坐标)所用的最佳宽度或高度。它仅使用相同的静态子范围大小16(对于两个坐标),但是可以方便地使用其他任何2的小数幂(但是如果不使用2的幂,则会降低int indexOf(int, int)int offsetOf(int, int)内部方法的速度),对于两个坐标和向上理想情况下,该compact()方法应该能够确定最佳的拟合尺寸。

如果这些分裂子区域的大小可以改变,那么将有必要添加实例成员对这些小范围的大小,而不是静态的SUBRANGE_POSITIONS,并且使静态方法int subrangeOf(int i, int j)int positionOffsetOf(int i, int j)成非静态的; 和初始化数组DEFAULT_POSITIONSDEFAULT_VALUES则需要将其删除或重新定义。

如果要支持交织,则基本上是从将现有值分成两个大小相同的值开始(两者都是最小子范围大小的倍数,第一个子集可能比第二个子集多一个子范围),以及您将在所有连续位置扫描较大的一个,以找到匹配的交织;那么您将尝试匹配这些值。然后,通过将子集分成两半(也是最小子范围大小的倍数)来递归循环,然后再次扫描以匹配这些子集(这将使子集的数量乘以2:与当前值的大小相比,subrangePositions索引的大小值得该值,以查看其是否提供有效的压缩(如果不行,则在此处停止:您直接从交错压缩过程中找到了最佳子范围大小)。在这种情况下; 在压实期间,子范围的大小将是可变的。

但是这段代码显示了如何分配非零值并data为其他(非零)子范围重新分配数组,然后当存在重复项时如何优化(compact()使用该setAt(int i, int j, double value)方法执行分配后)此数据的存储可以在数据中统一的子范围,并在subrangePositions数组中的同一位置重新索引。

无论如何,特里树的所有原理都在这里实现:

  1. 使用单个向量而不是双索引数组(每个数组单独分配)来表示矩阵总是更快(并且在内存中更紧凑,意味着更好的局部性)。改进在double getAt(int, int)方法中可见!

  2. 您节省了大量空间,但是在分配值时,可能需要一些时间重新分配新的子范围。因此,子范围不应太小,否则重新设置对于设置矩阵而言会过于频繁。

  3. 通过检测公共子范围,可以将初始的大矩阵自动转换为更紧凑的矩阵。然后,典型的实现将包含上述方法compact()。但是,如果get()访问非常快而set()相当快,则如果有很多要压缩的常见子范围(例如,用自身减去大型非稀疏随机填充矩阵时),compact()可能会非常慢。 ,或将其乘以零:在这种情况下,通过实例化一个新的并丢弃旧的来重置Trie会更简单,更快。

  4. 公用子范围在数据中使用公用存储,因此此共享数据必须是只读的。如果必须更改单个值而不更改矩阵的其余部分,则必须首先确保在subrangePositions索引中仅对其进行一次引用。否则,您将需要在values向量的任意位置(通常在末尾)分配一个新的子范围,然后将该新子范围的位置存储到subrangePositions索引中。



请注意,通用的Colt库虽然很好,但在处理稀疏矩阵时却不如它好,因为它使用的是哈希(或行压缩)技术,尽管它是一个出色的优化,这既是节省空间节省时间的,特别是对于最常见的getAt()操作。

即使是此处描述的setAt()操作也可以节省大量时间(此处实现的方式,即在设置后无需自动压缩,仍然可以根据需求和估计时间来实现,其中压缩仍将节省大量存储空间时间价格):节省的时间与子范围内的单元格数量成正比,而节省的空间则与每个子范围内的单元格数量成反比。如果要使用子范围大小,则最好妥协,例如每个子范围的像元数是2D矩阵中像元总数的平方根(在使用3D矩阵时,它将是立方根)。

在Colt稀疏矩阵实现中使用的哈希技术的不便之处在于,它们增加了很多存储开销,并且由于可能的冲突而导致访问时间变慢。尝试可以避免所有冲突,然后可以保证在最坏的情况下将线性O(n)时间节省为O(1)时间,其中(n)是可能发生冲突的次数(在稀疏矩阵的情况下,可能是对于非稀疏(即完整矩阵),最大为矩阵中非默认值像元的数量,即最大为矩阵大小的总数乘以与哈希填充因子成比例的因子)。

在Colt中使用的RC(行压缩)技术离Tries较近,但这是另一种代价,这里使用的压缩技术对最频繁的只读get()操作具有非常慢的访问时间,并且非常慢setAt()操作的压缩。另外,所使用的压缩不是正交的,这与Tries的这种保留正交性的表示方式不同。对于相关的查看操作,例如跨步,换位(作为基于整数循环模运算的跨步操作),细分(和子选择,通常包括排序视图),也将尝试保持这种正交性。

我只是希望柯尔特将来会更新,以使用Tries(即TrieSparseMatrix而不是HashSparseMatrix和RCSparseMatrix)来实现另一种实现。这些想法在本文中。

Trove实现(基于int-> int映射)也基于类似于Colt的HashedSparseMatrix的哈希技术,即它们具有相同的不便之处。尝试会快很多,而且会消耗适度的额外空间(但是可以对最终的矩阵/ trie使用最终的compact()ion操作,从而在一定的时间内优化并变得比Trove和Colt更好)。

注意:此Trie实现绑定到特定的本机类型(此处为double)。这是自愿的,因为使用装箱类型的通用实现具有巨大的空间开销(并且访问时间要慢得多)。在这里,它仅使用双精度的原生一维数组,而不是通用Vector。但是当然也可以为Tries派生通用实现...不幸的是,Java仍然不允许编写具有本机类型所有优点的真正通用类,除非编写多个实现(对于通用Object类型或每个通用类型)。本机类型),并通过类型工厂为所有这些操作提供服务。该语言应该能够自动实例化本机实现并自动构建工厂(目前,即使在Java 7中也不是这种情况,这是在其中。


1
写得很好,很有教育意义。谢谢!
HaiXin Tie

1
文本很有用,它是一个很好的数据结构,但它甚至还不能接近编译,并且在许多地方都是“聪明”或“微妙”的。因此,我不确定真正要在这段代码中添加什么代码,因为从头开始实现比从上面提供的代码开始更快。相反,它不利于本来很好的讨论。

我从一个真实世界的应用程序中提取了代码,试图删除与它无关的内容,但是是的,它不能直接编译,该代码通过各种待办事项自动进行了简化,但是它提供了Trie所使用的一般概念。值得注意的是,以下文本中暗示了应如何针对特定元素类型进行调整/调整。
verdy_p 2014年

2
最终,几年后,我结束了对另一个项目的讨论,并尝试了Trie结构(编写自己的代码)。就像您所说的那样快速燃烧。因此,这是正确的答案。
DanM 2014年

1
@ DanM我认为您是那种整理过的人!(已尝试过Trie);-)
编程

10

以下框架可以测试Java Matrix库,并提供了一个很好的清单! https://lessthanoptimal.github.io/Java-Matrix-Benchmark/

经过测试的库:

* Colt
* Commons Math
* Efficient Java Matrix Library (EJML)
* Jama
* jblas
* JScience (Older benchmarks only)
* Matrix Toolkit Java (MTJ)
* OjAlgo
* Parallel Colt
* Universal Java Matrix Package (UJMP) 

4

这似乎很简单。

您可以使用row * maxcolums + column作为索引来使用数据的二叉树。

要查找项目,您只需计算row * maxcolums + column,然后对要查找它的树进行二进制搜索,如果不存在,则可以返回null(它是О(log n),其中n是包含对象的单元格数)。


2

可能不是最快的运行时解决方案,但我能想到的最快的解决方案似乎可行。创建一个Index类并将其用作SortedMap的键,例如:

    SortedMap<Index, Object> entries = new TreeMap<Index, Object>();
    entries.put(new Index(1, 4), "1-4");
    entries.put(new Index(5555555555l, 767777777777l), "5555555555l-767777777777l");
    System.out.println(entries.size());
    System.out.println(entries.get(new Index(1, 4)));
    System.out.println(entries.get(new Index(5555555555l, 767777777777l)));

我的Index类看起来像这样(在Eclipse代码生成器的帮助下)。

public static class Index implements Comparable<Index>
{
    private long x;
    private long y;

    public Index(long x, long y)
    {
        super();
        this.x = x;
        this.y = y;
    }

    public int compareTo(Index index)
    {
        long ix = index.x;
        if (ix == x)
        {
            long iy = index.y;
            if (iy == y)
            {
                return 0;
            }
            else if (iy < y)
            {
                return -1;
            }
            else
            {
                return 1;
            }
        }
        else if (ix < x)
        {
            return -1;
        }
        else
        {
            return 1;
        }
    }

    public int hashCode()
    {
        final int PRIME = 31;
        int result = 1;
        result = PRIME * result + (int) (x ^ (x >>> 32));
        result = PRIME * result + (int) (y ^ (y >>> 32));
        return result;
    }

    public boolean equals(Object obj)
    {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (getClass() != obj.getClass())
            return false;
        final Index other = (Index) obj;
        if (x != other.x)
            return false;
        if (y != other.y)
            return false;
        return true;
    }

    public long getX()
    {
        return x;
    }

    public long getY()
    {
        return y;
    }
}

2

您迁移一下la4j(Java的线性代数)库。它支持用于稀疏矩阵的CRS(压缩行存储)CCS(压缩列存储)内部表示。因此,这些是稀疏数据的最有效,最快的内部结构。

这是在la4j中使用稀疏矩阵的简短示例:

Matrix a = new CRSMatrix(new double[][]{ // 'a' - CRS sparse matrix
   { 1.0, 0.0, 3.0 },
   { 0.0, 5.0, 0.0 },
   { 7.0, 0.0. 9.0 }
});

Matrix b = a.transpose(); // 'b' - CRS sparse matrix

Matrix c = b.multiply(a, Matrices.CCS_FACTORY); // 'c' = 'b' * 'a'; 
                                                // 'c' - CCS sparse matrix

0

您可以只使用嵌套映射,尽管如果您需要对其进行矩阵计算,那可能不是最佳选择

 Map<Integer, Map<integer, Object>> matrix;

也许不是对象,而是为实际数据使用一些元组,以便提取后可以更轻松地使用它,例如:

class Tuple<T extends yourDataObject> {
  public final int x;
  public final int y;
  public final T object;
}

class Matrix {
  private final Map<Integer, Map<interger, Tupple>> data = new...;

 void add(int x, int y, Object object) {
     data.get(x).put(new Tupple(x,y,object);
 }
}


//etc

空检查等,为简洁起见


2
首选long iso int表示范围“十亿”。当“将有数十万个单元格包含一个对象”时,嵌套地图会产生大量开销。将坐标存储在Tupple中是多余的,并增加了操作维护。没有索引的抽象:不灵活/不可扩展。
eljenso

上面是最简单的不可扩展的解决方案,对于没有元素的限制非常有限,但是这不应该是-1。
JehandadK 2013年

-2

HashMap岩石。只需使用StringBuilder(而不是+或String.format)将索引(作为字符串)与分隔符(如'/')连接起来,然后将其用作键。您无法获得比这更快,更高效的内存。稀疏矩阵大约在20世纪。:-)


正如我在文章/回复中所述,HashMap的速度不如我们想像的那样,因为它需要对要使用的每个索引键(用于读取和写入访问)进行散列,这需要一定的成本(并且对程序而言并不明显)以最小化碰撞)。
verdy_p 18-10-29

并且由于必须始终考虑冲突(以减少冲突或长循环查找其他位置的风险),因此您需要增加哈希表的内部大小,并保持最少数量的未使用插槽,但这样会浪费时间空间。同样,一旦您在哈希索引中获得位置,就需要比较有效键(不仅仅是它们的哈希值)。在全球范围内,它需要数百个CPU周期(在哈希表几乎已满的情况下,冲突程度很高时,则需要成千上万个CPU周期),而不是仅2个具有Trie的表间接访问所有表和大多数写操作的间接表!
verdy_p 18-10-29

请注意,在某些编程语言中,您别无选择:数组仅可用作哈希表(例如PHP,Lua),但已对它们进行了优化,以补偿表具有非稀疏范围的情况(内部使用两个单独的存储:哈希表) (对于非常稀疏的部分),以及用于更紧凑区域的简单1D索引(有时为2D Trie),或者仅对于某些具有
较小
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.