我正在寻找一个将两个列表作为输入,并返回Pearson相关性和相关性意义的函数。
我正在寻找一个将两个列表作为输入,并返回Pearson相关性和相关性意义的函数。
Answers:
您可以看一下scipy.stats
:
from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)
>>>
Help on function pearsonr in module scipy.stats.stats:
pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
皮尔逊相关性可以用numpy的公式计算corrcoef
。
import numpy
numpy.corrcoef(list1, list2)[0, 1]
一种替代可以是来自天然SciPy的功能linregress其计算:
斜率:回归线的斜率
截距:回归线的截距
r值:相关系数
p值:假设检验的两侧p值,其零假设是斜率为零
stderr:估算的标准误
这是一个示例:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
将返回您:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
lineregress(two_row_df)
如果您不想安装scipy,请使用此快速技巧,该技巧已从Programming Collective Intelligence进行了稍微修改:
(为确保正确性进行了编辑。)
from itertools import imap
def pearsonr(x, y):
# Assume len(x) == len(y)
n = len(x)
sum_x = float(sum(x))
sum_y = float(sum(y))
sum_x_sq = sum(map(lambda x: pow(x, 2), x))
sum_y_sq = sum(map(lambda x: pow(x, 2), y))
psum = sum(imap(lambda x, y: x * y, x, y))
num = psum - (sum_x * sum_y/n)
den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
if den == 0: return 0
return num / den
TypeError: unsupported operand type(s) for -: 'itertools.imap' and 'float'
在num = psum - (sum_x * sum_y/n)
以下代码是对该定义的直接解释:
import math
def average(x):
assert len(x) > 0
return float(sum(x)) / len(x)
def pearson_def(x, y):
assert len(x) == len(y)
n = len(x)
assert n > 0
avg_x = average(x)
avg_y = average(y)
diffprod = 0
xdiff2 = 0
ydiff2 = 0
for idx in range(n):
xdiff = x[idx] - avg_x
ydiff = y[idx] - avg_y
diffprod += xdiff * ydiff
xdiff2 += xdiff * xdiff
ydiff2 += ydiff * ydiff
return diffprod / math.sqrt(xdiff2 * ydiff2)
测试:
print pearson_def([1,2,3], [1,5,7])
退货
0.981980506062
这符合Excel中,这个计算器,SciPy的(也NumPy的),它分别返回0.981980506和0.9819805060619657和0.98198050606196574。
R:
> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805
编辑:修复了评论者指出的错误。
sum(x) / len(x)
您分割整数,而不是浮点数。因此sum([1,5,7]) / len([1,5,7]) = 13 / 3 = 4
,根据整数除法(而您要13. / 3. = 4.33...
)。要解决此问题,请将此行重写为float(sum(x)) / float(len(x))
(一个浮点数就足够了,因为Python自动将其转换)。
您也可以使用进行此操作pandas.DataFrame.corr
:
import pandas as pd
a = [[1, 2, 3],
[5, 6, 9],
[5, 6, 11],
[5, 6, 13],
[5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()
这给
0 1 2
0 1.000000 0.745601 0.916579
1 0.745601 1.000000 0.544248
2 0.916579 0.544248 1.000000
我认为我的答案应该最简单地编码和理解计算Pearson相关系数(PCC)的步骤,而不是依赖于numpy / scipy 。
import math
# calculates the mean
def mean(x):
sum = 0.0
for i in x:
sum += i
return sum / len(x)
# calculates the sample standard deviation
def sampleStandardDeviation(x):
sumv = 0.0
for i in x:
sumv += (i - mean(x))**2
return math.sqrt(sumv/(len(x)-1))
# calculates the PCC using both the 2 functions above
def pearson(x,y):
scorex = []
scorey = []
for i in x:
scorex.append((i - mean(x))/sampleStandardDeviation(x))
for j in y:
scorey.append((j - mean(y))/sampleStandardDeviation(y))
# multiplies both lists together into 1 list (hence zip) and sums the whole list
return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)
PCC 的意义基本上是向您显示两个变量/列表之间的相关程度如何。重要的是要注意PCC值的范围是-1至1。0到1之间的值表示正相关。值0 =最大变化(无相关性)。-1至0之间的值表示负相关。
sum
函数。
使用python中的pandas进行Pearson系数计算:由于您的数据包含列表,建议您尝试这种方法。与数据进行交互并从控制台对其进行操作将很容易,因为您可以可视化数据结构并根据需要进行更新。您还可以导出数据集并保存它,并从python控制台中添加新数据以供以后分析。该代码更简单,包含更少的代码行。我假设您需要一些快速的代码行来筛选数据以进行进一步分析
例:
data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}
import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes
df = pd.DataFrame(data, columns = ['list 1','list 2'])
from scipy import stats # For in-built method to get PCC
pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results
但是,您没有为我发布数据以查看数据集的大小或分析之前可能需要进行的转换。
嗯,这些响应中的许多响应都有很长且很难阅读的代码...
我建议在使用数组时使用numpy及其漂亮的功能:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
这是使用numpy的Pearson Correlation函数的实现:
def corr(data1, data2):
"data1 & data2 should be numpy arrays."
mean1 = data1.mean()
mean2 = data2.mean()
std1 = data1.std()
std2 = data2.std()
# corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
return corr
这是mkh答案的一种变体,它比使用numba和scipy.stats.pearsonr运行得快得多。
import numba
@numba.jit
def corr(data1, data2):
M = data1.size
sum1 = 0.
sum2 = 0.
for i in range(M):
sum1 += data1[i]
sum2 += data2[i]
mean1 = sum1 / M
mean2 = sum2 / M
var_sum1 = 0.
var_sum2 = 0.
cross_sum = 0.
for i in range(M):
var_sum1 += (data1[i] - mean1) ** 2
var_sum2 += (data2[i] - mean2) ** 2
cross_sum += (data1[i] * data2[i])
std1 = (var_sum1 / M) ** .5
std2 = (var_sum2 / M) ** .5
cross_mean = cross_sum / M
return (cross_mean - mean1 * mean2) / (std1 * std2)
这是基于稀疏向量的皮尔逊相关性的实现。这里的向量表示为表示为(索引,值)的元组列表。两个稀疏向量的长度可以不同,但在所有向量上,大小必须相同。这对于文本挖掘应用很有用,因为大多数特征都是单词包,因此向量大小非常大,因此通常使用稀疏向量执行计算。
def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
indexed_feature_dict = {}
if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")
sum_a = sum(value for index, value in first_feature_vector)
sum_b = sum(value for index, value in second_feature_vector)
avg_a = float(sum_a) / length_of_featureset
avg_b = float(sum_b) / length_of_featureset
mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))
covariance_a_b = 0
#calculate covariance for the sparse vectors
for tuple in first_feature_vector:
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
indexed_feature_dict[tuple[0]] = tuple[1]
count_of_features = 0
for tuple in second_feature_vector:
count_of_features += 1
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
if tuple[0] in indexed_feature_dict:
covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
del (indexed_feature_dict[tuple[0]])
else:
covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)
for index in indexed_feature_dict:
count_of_features += 1
covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)
#adjust covariance with rest of vector with 0 value
covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b
if mean_sq_error_a == 0 or mean_sq_error_b == 0:
return -1
else:
return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)
单元测试:
def test_get_get_pearson_corelation(self):
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)
我有一个非常简单易懂的解决方案。对于长度相等的两个数组,皮尔逊系数可以很容易地计算如下:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef
您可能想知道如何在寻找特定方向的相关性(负相关或正相关)的情况下解释您的概率。这是我编写的用于帮助实现此功能的函数。甚至可能是对的!
它基于我从http://www.vassarstats.net/rsig.html和http://en.wikipedia.org/wiki/Student%27s_t_distribution收集的信息,这要归功于此处发布的其他答案。
# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
# (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
# if positive, p is the probability that there is no positive correlation in
# the population sampled by X and Y
# if negative, p is the probability that there is no negative correlation
# if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
x = len(X)
if x != len(Y):
raise ValueError("variables not same len: " + str(x) + ", and " + \
str(len(Y)))
if x < 6:
raise ValueError("must have at least 6 samples, but have " + str(x))
(corr, prb_2_tail) = stats.pearsonr(X, Y)
if not direction:
return (corr, prb_2_tail)
prb_1_tail = prb_2_tail / 2
if corr * direction > 0:
return (corr, prb_1_tail)
return (corr, 1 - prb_1_tail)
您可以看一下这篇文章。这是一个有据可查的示例,该示例用于使用pandas库(适用于Python)基于来自多个文件的历史外汇货币对数据计算相关性,然后使用seaborn库生成热图图。
http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/
def pearson(x,y):
n=len(x)
vals=range(n)
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
pSum=sum([x[i]*y[i] for i in vals])
# Calculating Pearson correlation
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0: return 0
r=num/den
return r