我已经看到存在这样的功能BigInteger
,即BigInteger#gcd
。是否有在Java中的其它功能也适用于其他类型的工作(int
,long
或Integer
)?似乎这是有意义的java.lang.Math.gcd
(带有各种重载),但它不存在。在别的地方吗?
(请不要将此问题与“我如何自己实现”混淆!)
我已经看到存在这样的功能BigInteger
,即BigInteger#gcd
。是否有在Java中的其它功能也适用于其他类型的工作(int
,long
或Integer
)?似乎这是有意义的java.lang.Math.gcd
(带有各种重载),但它不存在。在别的地方吗?
(请不要将此问题与“我如何自己实现”混淆!)
Answers:
对于int和long而言,作为原语,并非如此。对于Integer,可能有人写过一个。
假设BigInteger是int,Integer,long和Long的(数学/函数)超集,如果您需要使用这些类型,请将它们转换为BigInteger,执行GCD,然后将结果转换回。
private static int gcdThing(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
BigInteger.valueOf(a).gcd(BigInteger.valueOf(b)).intValue()
好多了。
据我所知,没有任何内置的基元方法。但是像这样简单的事情就可以解决问题:
public int gcd(int a, int b) {
if (b==0) return a;
return gcd(b,a%b);
}
如果您喜欢这种事情,也可以单行处理:
public int gcd(int a, int b) { return b==0 ? a : gcd(b, a%b); }
应该注意的是,两者编译成相同的字节码时绝对没有区别。
雅加达公共数学就是这样。
您可以使用Binary GCD算法的此实现
public class BinaryGCD {
public static int gcd(int p, int q) {
if (q == 0) return p;
if (p == 0) return q;
// p and q even
if ((p & 1) == 0 && (q & 1) == 0) return gcd(p >> 1, q >> 1) << 1;
// p is even, q is odd
else if ((p & 1) == 0) return gcd(p >> 1, q);
// p is odd, q is even
else if ((q & 1) == 0) return gcd(p, q >> 1);
// p and q odd, p >= q
else if (p >= q) return gcd((p-q) >> 1, q);
// p and q odd, p < q
else return gcd(p, (q-p) >> 1);
}
public static void main(String[] args) {
int p = Integer.parseInt(args[0]);
int q = Integer.parseInt(args[1]);
System.out.println("gcd(" + p + ", " + q + ") = " + gcd(p, q));
}
}
来自http://introcs.cs.princeton.edu/java/23recursion/BinaryGCD.java.html
如果两个数字均为负,则此处的某些实现将无法正常工作。gcd(-12,-18)是6,而不是-6。
因此,应该返回一个绝对值,例如
public static int gcd(int a, int b) {
if (b == 0) {
return Math.abs(a);
}
return gcd(b, a % b);
}
a
和b
都为Integer.MIN_VALUE
,您将得到Integer.MIN_VALUE
结果,结果为负。这可能是可以接受的。问题是gcd(-2 ^ 31,-2 ^ 31)= 2 ^ 31,但是2 ^ 31不能表示为整数。
if(a==0 || b==0) return Math.abs(a+b);
以便行为对于零参数而言是真正对称的。
我们可以使用递归函数来查找gcd
public class Test
{
static int gcd(int a, int b)
{
// Everything divides 0
if (a == 0 || b == 0)
return 0;
// base case
if (a == b)
return a;
// a is greater
if (a > b)
return gcd(a-b, b);
return gcd(a, b-a);
}
// Driver method
public static void main(String[] args)
{
int a = 98, b = 56;
System.out.println("GCD of " + a +" and " + b + " is " + gcd(a, b));
}
}
如果您使用的是Java 1.5或更高版本,则这是一个迭代的二进制GCD算法,用于Integer.numberOfTrailingZeros()
减少所需的检查和迭代次数。
public class Utils {
public static final int gcd( int a, int b ){
// Deal with the degenerate case where values are Integer.MIN_VALUE
// since -Integer.MIN_VALUE = Integer.MAX_VALUE+1
if ( a == Integer.MIN_VALUE )
{
if ( b == Integer.MIN_VALUE )
throw new IllegalArgumentException( "gcd() is greater than Integer.MAX_VALUE" );
return 1 << Integer.numberOfTrailingZeros( Math.abs(b) );
}
if ( b == Integer.MIN_VALUE )
return 1 << Integer.numberOfTrailingZeros( Math.abs(a) );
a = Math.abs(a);
b = Math.abs(b);
if ( a == 0 ) return b;
if ( b == 0 ) return a;
int factorsOfTwoInA = Integer.numberOfTrailingZeros(a),
factorsOfTwoInB = Integer.numberOfTrailingZeros(b),
commonFactorsOfTwo = Math.min(factorsOfTwoInA,factorsOfTwoInB);
a >>= factorsOfTwoInA;
b >>= factorsOfTwoInB;
while(a != b){
if ( a > b ) {
a = (a - b);
a >>= Integer.numberOfTrailingZeros( a );
} else {
b = (b - a);
b >>= Integer.numberOfTrailingZeros( b );
}
}
return a << commonFactorsOfTwo;
}
}
单元测试:
import java.math.BigInteger;
import org.junit.Test;
import static org.junit.Assert.*;
public class UtilsTest {
@Test
public void gcdUpToOneThousand(){
for ( int x = -1000; x <= 1000; ++x )
for ( int y = -1000; y <= 1000; ++y )
{
int gcd = Utils.gcd(x, y);
int expected = BigInteger.valueOf(x).gcd(BigInteger.valueOf(y)).intValue();
assertEquals( expected, gcd );
}
}
@Test
public void gcdMinValue(){
for ( int x = 0; x < Integer.SIZE-1; x++ ){
int gcd = Utils.gcd(Integer.MIN_VALUE,1<<x);
int expected = BigInteger.valueOf(Integer.MIN_VALUE).gcd(BigInteger.valueOf(1<<x)).intValue();
assertEquals( expected, gcd );
}
}
}
public int gcd(int num1, int num2) {
int max = Math.abs(num1);
int min = Math.abs(num2);
while (max > 0) {
if (max < min) {
int x = max;
max = min;
min = x;
}
max %= min;
}
return min;
}
此方法使用Euclid算法获得两个整数的“最大公约数”。它接收两个整数并返回它们的gcd。就这么简单!
/*
import scanner and instantiate scanner class;
declare your method with two parameters
declare a third variable;
set condition;
swap the parameter values if condition is met;
set second conditon based on result of first condition;
divide and assign remainder to the third variable;
swap the result;
in the main method, allow for user input;
Call the method;
*/
public class gcf {
public static void main (String[]args){//start of main method
Scanner input = new Scanner (System.in);//allow for user input
System.out.println("Please enter the first integer: ");//prompt
int a = input.nextInt();//initial user input
System.out.println("Please enter a second interger: ");//prompt
int b = input.nextInt();//second user input
Divide(a,b);//call method
}
public static void Divide(int a, int b) {//start of your method
int temp;
// making a greater than b
if (b > a) {
temp = a;
a = b;
b = temp;
}
while (b !=0) {
// gcd of b and a%b
temp = a%b;
// always make a greater than b
a =b;
b =temp;
}
System.out.println(a);//print to console
}
}
Commons-Math和Guava提供的GCD功能有所不同。
ArithematicException.class
只会为Integer.MIN_VALUE
或抛出Long.MIN_VALUE
。
IllegalArgumentException.class
为任何负值抛出。%将给我们gcd在两个数字之间,这意味着:-big_number / small_number的%或mod是= gcd,我们将其写在java上是这样的 big_number % small_number
。
EX1:两个整数
public static int gcd(int x1,int x2)
{
if(x1>x2)
{
if(x2!=0)
{
if(x1%x2==0)
return x2;
return x1%x2;
}
return x1;
}
else if(x1!=0)
{
if(x2%x1==0)
return x1;
return x2%x1;
}
return x2;
}
EX2:三个整数
public static int gcd(int x1,int x2,int x3)
{
int m,t;
if(x1>x2)
t=x1;
t=x2;
if(t>x3)
m=t;
m=x3;
for(int i=m;i>=1;i--)
{
if(x1%i==0 && x2%i==0 && x3%i==0)
{
return i;
}
}
return 1;
}
gcd(42, 30)
应该如此,6
但12
以您的示例为例。但是12不是30的除数,也不是42的除数。您应该gcd
递归调用。请参阅Matt的答案或在Wikipedia上查找欧几里得算法。