我想知道是否有Parallel.For等效于Java的.net版本?
如果有人可以提供示例?谢谢!
我想知道是否有Parallel.For等效于Java的.net版本?
如果有人可以提供示例?谢谢!
Parallel.for
任何的清单... @Emil THKS的,我想我得到它现在
Answers:
我猜最接近的是:
ExecutorService exec = Executors.newFixedThreadPool(SOME_NUM_OF_THREADS);
try {
for (final Object o : list) {
exec.submit(new Runnable() {
@Override
public void run() {
// do stuff with o.
}
});
}
} finally {
exec.shutdown();
}
根据TheLQ的评论,您可以将SUM_NUM_THREADS设置为 Runtime.getRuntime().availableProcessors();
编辑:决定添加一个基本的“ Parallel.For”实现
public class Parallel {
private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final ExecutorService forPool = Executors.newFixedThreadPool(NUM_CORES * 2, new NamedThreadFactory("Parallel.For"));
public static <T> void For(final Iterable<T> elements, final Operation<T> operation) {
try {
// invokeAll blocks for us until all submitted tasks in the call complete
forPool.invokeAll(createCallables(elements, operation));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static <T> Collection<Callable<Void>> createCallables(final Iterable<T> elements, final Operation<T> operation) {
List<Callable<Void>> callables = new LinkedList<Callable<Void>>();
for (final T elem : elements) {
callables.add(new Callable<Void>() {
@Override
public Void call() {
operation.perform(elem);
return null;
}
});
}
return callables;
}
public static interface Operation<T> {
public void perform(T pParameter);
}
}
Parallel.For的示例用法
// Collection of items to process in parallel
Collection<Integer> elems = new LinkedList<Integer>();
for (int i = 0; i < 40; ++i) {
elems.add(i);
}
Parallel.For(elems,
// The operation to perform with each item
new Parallel.Operation<Integer>() {
public void perform(Integer param) {
System.out.println(param);
};
});
我想这个实现实际上更类似于Parallel.ForEach
编辑 如果有人有兴趣,我将其放在GitHub上。在GitHub上并行
MLaw的解决方案是非常实用的Parallel.ForEach。我添加了一些修改以制作Parallel.For。
public class Parallel
{
static final int iCPU = Runtime.getRuntime().availableProcessors();
public static <T> void ForEach(Iterable <T> parameters,
final LoopBody<T> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (final T param : parameters)
{
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(param); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
public static void For(int start,
int stop,
final LoopBody<Integer> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (int i=start; i<stop; i++)
{
final Integer k = i;
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(k); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
}
public interface LoopBody <T>
{
void run(T i);
}
public class ParallelTest
{
int k;
public ParallelTest()
{
k = 0;
Parallel.For(0, 10, new LoopBody <Integer>()
{
public void run(Integer i)
{
k += i;
System.out.println(i);
}
});
System.out.println("Sum = "+ k);
}
public static void main(String [] argv)
{
ParallelTest test = new ParallelTest();
}
}
根据建议,添加CountDownLatch。添加chunksize以减少submit()。
当对400万个项目的阵列进行测试时,该内核在我的Core i7 2630QM CPU上的顺序for()速度提高了5倍。
public class Loop {
public interface Each {
void run(int i);
}
private static final int CPUs = Runtime.getRuntime().availableProcessors();
public static void withIndex(int start, int stop, final Each body) {
int chunksize = (stop - start + CPUs - 1) / CPUs;
int loops = (stop - start + chunksize - 1) / chunksize;
ExecutorService executor = Executors.newFixedThreadPool(CPUs);
final CountDownLatch latch = new CountDownLatch(loops);
for (int i=start; i<stop;) {
final int lo = i;
i += chunksize;
final int hi = (i<stop) ? i : stop;
executor.submit(new Runnable() {
public void run() {
for (int i=lo; i<hi; i++)
body.run(i);
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {}
executor.shutdown();
}
public static void main(String [] argv) {
Loop.withIndex(0, 9, new Loop.Each() {
public void run(int i) {
System.out.println(i*10);
}
});
}
}
这是我对这个主题的贡献https://github.com/pablormier/parallel-loops。用法很简单:
Collection<String> upperCaseWords =
Parallel.ForEach(words, new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
});
也可以更改某些行为方面,例如线程数(默认情况下,它使用缓存的线程池):
Collection<String> upperCaseWords =
new Parallel.ForEach<String, String>(words)
.withFixedThreads(4)
.apply(new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
}).values();
所有代码都独立包含在一个Java类中,并且没有比JDK多的依赖项。我也鼓励您检查Java 8以功能样式方式并行化的新方法
Java 7中的Fork join框架用于并发支持。但是我不知道的确切等价物Parallel.For
。
Parallel.For有一个等效项,可作为java扩展使用。它称为Ateji PX,它们有一个免费版本供您使用。http://www.ateji.com/px/index.html
它与parallel.for完全等效,并且看起来类似。
For ||
有关维基百科的更多示例和说明:http: //en.wikipedia.org/wiki/Ateji_PX
Java IMO中的封闭事物
同步通常会破坏并行for循环的速度。因此,并行for循环通常需要其私有数据和减少机制以将所有线程的私有数据减少为单个结果。
因此,我Weimin Xiao
通过简化机制扩展了Parallel.For版本。
public class Parallel {
public static interface IntLoopBody {
void run(int i);
}
public static interface LoopBody<T> {
void run(T i);
}
public static interface RedDataCreator<T> {
T run();
}
public static interface RedLoopBody<T> {
void run(int i, T data);
}
public static interface Reducer<T> {
void run(T returnData, T addData);
}
private static class ReductionData<T> {
Future<?> future;
T data;
}
static final int nCPU = Runtime.getRuntime().availableProcessors();
public static <T> void ForEach(Iterable <T> parameters, final LoopBody<T> loopBody) {
ExecutorService executor = Executors.newFixedThreadPool(nCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (final T param : parameters) {
futures.add(executor.submit(() -> loopBody.run(param) ));
}
for (Future<?> f : futures) {
try {
f.get();
} catch (InterruptedException | ExecutionException e) {
System.out.println(e);
}
}
executor.shutdown();
}
public static void For(int start, int stop, final IntLoopBody loopBody) {
final int chunkSize = (stop - start + nCPU - 1)/nCPU;
final int loops = (stop - start + chunkSize - 1)/chunkSize;
ExecutorService executor = Executors.newFixedThreadPool(loops);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (int i=start; i < stop; ) {
final int iStart = i;
i += chunkSize;
final int iStop = (i < stop) ? i : stop;
futures.add(executor.submit(() -> {
for (int j = iStart; j < iStop; j++)
loopBody.run(j);
}));
}
for (Future<?> f : futures) {
try {
f.get();
} catch (InterruptedException | ExecutionException e) {
System.out.println(e);
}
}
executor.shutdown();
}
public static <T> void For(int start, int stop, T result, final RedDataCreator<T> creator, final RedLoopBody<T> loopBody, final Reducer<T> reducer) {
final int chunkSize = (stop - start + nCPU - 1)/nCPU;
final int loops = (stop - start + chunkSize - 1)/chunkSize;
ExecutorService executor = Executors.newFixedThreadPool(loops);
List<ReductionData<T>> redData = new LinkedList<ReductionData<T>>();
for (int i = start; i < stop; ) {
final int iStart = i;
i += chunkSize;
final int iStop = (i < stop) ? i : stop;
final ReductionData<T> rd = new ReductionData<T>();
rd.data = creator.run();
rd.future = executor.submit(() -> {
for (int j = iStart; j < iStop; j++) {
loopBody.run(j, rd.data);
}
});
redData.add(rd);
}
for (ReductionData<T> rd : redData) {
try {
rd.future.get();
if (rd.data != null) {
reducer.run(result, rd.data);
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
executor.shutdown();
}
}
这是一个简单的测试示例:使用非同步映射的并行字符计数器。
import java.util.*;
public class ParallelTest {
static class Counter {
int cnt;
Counter() {
cnt = 1;
}
}
public static void main(String[] args) {
String text = "More formally, if this map contains a mapping from a key k to a " +
"value v such that key compares equal to k according to the map's ordering, then " +
"this method returns v; otherwise it returns null.";
Map<Character, Counter> charCounter1 = new TreeMap<Character, Counter>();
Map<Character, Counter> charCounter2 = new TreeMap<Character, Counter>();
// first sequentially
for(int i=0; i < text.length(); i++) {
char c = text.charAt(i);
Counter cnt = charCounter1.get(c);
if (cnt == null) {
charCounter1.put(c, new Counter());
} else {
cnt.cnt++;
}
}
for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue().cnt);
}
// now parallel without synchronization
Parallel.For(0, text.length(), charCounter2,
// Creator
() -> new TreeMap<Character, Counter>(),
// Loop Body
(i, map) -> {
char c = text.charAt(i);
Counter cnt = map.get(c);
if (cnt == null) {
map.put(c, new Counter());
} else {
cnt.cnt++;
}
},
// Reducer
(result, map) -> {
for(Map.Entry<Character, Counter> entry: map.entrySet()) {
Counter cntR = result.get(entry.getKey());
if (cntR == null) {
result.put(entry.getKey(), entry.getValue());
} else {
cntR.cnt += entry.getValue().cnt;
}
}
}
);
// compare results
assert charCounter1.size() == charCounter2.size() : "wrong size: " + charCounter1.size() + ", " + charCounter2.size();
Iterator<Map.Entry<Character, Counter>> it2 = charCounter2.entrySet().iterator();
for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
Map.Entry<Character, Counter> entry2 = it2.next();
assert entry.getKey() == entry2.getKey() && entry.getValue().cnt == entry2.getValue().cnt : "wrong content";
}
System.out.println("Well done!");
}
}
charCounter1
而不是map
最终的reduce步骤。
entry.getValue().cnt == entry2.getValue().cnt
:)
我有一个更新的Java Parallel类,它可以执行Parallel.For,Parallel.ForEach,Parallel.Tasks和分区并行循环。源代码如下:
以下是使用这些并行循环的示例:
public static void main(String [] argv)
{
//sample data
final ArrayList<String> ss = new ArrayList<String>();
String [] s = {"a", "b", "c", "d", "e", "f", "g"};
for (String z : s) ss.add(z);
int m = ss.size();
//parallel-for loop
System.out.println("Parallel.For loop:");
Parallel.For(0, m, new LoopBody<Integer>()
{
public void run(Integer i)
{
System.out.println(i +"\t"+ ss.get(i));
}
});
//parallel for-each loop
System.out.println("Parallel.ForEach loop:");
Parallel.ForEach(ss, new LoopBody<String>()
{
public void run(String p)
{
System.out.println(p);
}
});
//partitioned parallel loop
System.out.println("Partitioned Parallel loop:");
Parallel.ForEach(Parallel.create(0, m), new LoopBody<Partition>()
{
public void run(Partition p)
{
for(int i=p.start; i<p.end; i++)
System.out.println(i +"\t"+ ss.get(i));
}
});
//parallel tasks
System.out.println("Parallel Tasks:");
Parallel.Tasks(new Task []
{
//task-1
new Task() {public void run()
{
for(int i=0; i<3; i++)
System.out.println(i +"\t"+ ss.get(i));
}},
//task-2
new Task() {public void run()
{
for (int i=3; i<6; i++)
System.out.println(i +"\t"+ ss.get(i));
}}
});
}
我发现ForkJoinPool和IntStream在我的案例中很有帮助(线程数量有限的并行For)。
C#:
static void MathParallel(int threads)
{
Parallel.For(1, partitions, new ParallelOptions { MaxDegreeOfParallelism = threads }, (i) => {
partitionScores[i] = Math.Sin(3*i);
});
}
和Java等效:
static void mathParallel(int threads) {
ForkJoinPool pool = new ForkJoinPool(threads);
pool.submit(()-> IntStream.range(0, partitions).parallel().forEach(i -> {
partitionScores[i] = Math.sin(3*i);
}));
pool.shutdown();
while (!pool.isTerminated()){
}
}
这就是我在Java 7及以下版本中使用的功能。
对于Java 8,您可以使用forEach()
[更新]
平行班
private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final int MAX_THREAD = NUM_CORES*2;
public static <T2 extends T, T> void For(final Iterable<T2> elements, final Operation<T> operation) {
if (elements != null) {
final Iterator<T2> iterator = elements.iterator();
if (iterator.hasNext()) {
final Throwable[] throwable = new Throwable[1];
final Callable<Void> callable = new Callable<Void>() {
boolean first = true;
@Override
public final Void call() throws Exception {
if ((first || operation.follow()) && iterator.hasNext()) {
T result;
result = iterator.next();
operation.perform(result);
if (first) {
synchronized (this) {
first = false;
}
}
}
return null;
}
};
final Runnable runnable = new Runnable() {
@Override
public final void run() {
while (iterator.hasNext()) {
try {
synchronized (callable) {
callable.call();
}
if (!operation.follow()) {
break;
}
} catch (Throwable t) {
t.printStackTrace();
synchronized (throwable) {
throwable[0] = t;
}
throw new RuntimeException(t);
}
}
}
};
final ExecutorService executor = Executors.newFixedThreadPool(MAX_THREAD);
for (int threadIndex=0; threadIndex<MAX_THREAD && iterator.hasNext(); threadIndex++) {
executor.execute(runnable);
}
executor.shutdown();
while (!executor.isTerminated()) {
try {
Thread.sleep(0,1);
} catch (InterruptedException e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
if (throwable[0] != null) throw new RuntimeException(throwable[0]);
}
}
}
public interface Operation<T> {
void perform(T pParameter);
boolean follow();
}
例
@Test
public void test() {
List<Long> longList = new ArrayList<Long>();
for (long i = 0; i < 1000000; i++) {
longList.add(i);
}
final List<Integer> integerList = new LinkedList<>();
Parallel.For((Iterable<? extends Number>) longList, new Parallel.Operation<Number>() {
@Override
public void perform(Number pParameter) {
System.out.println(pParameter);
integerList.add(pParameter.intValue());
}
@Override
public boolean follow() {
return true;
}
});
for (Number num : integerList) {
System.out.println(num);
}
}