如何使用标准Scala类在Scala中解析JSON?


113

我正在使用Scala 2.8中的JSON类中的构建来解析JSON代码。我由于最小化依赖性而不想使用Liftweb或其他任何一种。

我这样做的方法似乎势在必行,是否有更好的方法可以做到?

import scala.util.parsing.json._
...
val json:Option[Any] = JSON.parseFull(jsonString)
val map:Map[String,Any] = json.get.asInstanceOf[Map[String, Any]]
val languages:List[Any] = map.get("languages").get.asInstanceOf[List[Any]]
languages.foreach( langMap => {
val language:Map[String,Any] = langMap.asInstanceOf[Map[String,Any]]
val name:String = language.get("name").get.asInstanceOf[String]
val isActive:Boolean = language.get("is_active").get.asInstanceOf[Boolean]
val completeness:Double = language.get("completeness").get.asInstanceOf[Double]
}

Answers:


129

这是一个基于提取器的解决方案,它将进行类转换:

class CC[T] { def unapply(a:Any):Option[T] = Some(a.asInstanceOf[T]) }

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin

val result = for {
    Some(M(map)) <- List(JSON.parseFull(jsonString))
    L(languages) = map("languages")
    M(language) <- languages
    S(name) = language("name")
    B(active) = language("is_active")
    D(completeness) = language("completeness")
} yield {
    (name, active, completeness)
}

assert( result == List(("English",true,2.5), ("Latin",false,0.9)))

在for循环的开始,我人为地将结果包装在一个列表中,以便在最后生成一个列表。然后在for循环的其余部分中,我将使用生成器(使用<-)和值定义(使用=)将利用unapply方法的事实。

(较旧的答案已被删除-如果您有好奇心,请查看编辑历史记录)


对不起,我想找一个旧帖子,但是循环中第一个Some(M(map))的含义是什么?我了解M(map)正在将地图提取到变量“ map”,但是Some呢?
Federico Bonelli 2014年

1
@FedericoBonelli JSON.parseFull返回Option[Any],因此以List(None)或开头List(Some(any))。的Some是用于在模式匹配Option
huynhjl 2014年

21

这是我进行模式匹配的方式:

val result = JSON.parseFull(jsonStr)
result match {
  // Matches if jsonStr is valid JSON and represents a Map of Strings to Any
  case Some(map: Map[String, Any]) => println(map)
  case None => println("Parsing failed")
  case other => println("Unknown data structure: " + other)
}

您能举一个jsonStr的例子吗,它不能与上面的jsonStr例子一起使用
priya khokher

可能值得发表一个关于您的问题的问题。我目前尚未在计算机上安装Scala,所以我没有准备好的JSON字符串。
马提亚斯·布劳恩

12

我喜欢@huynhjl的答案,这使我走上了正确的道路。但是,它在处理错误情况方面不是很好。如果所需的节点不存在,则将引发强制转换异常。我对此做了些微调整,Option以更好地处理此问题。

class CC[T] {
  def unapply(a:Option[Any]):Option[T] = if (a.isEmpty) {
    None
  } else {
    Some(a.get.asInstanceOf[T])
  }
}

object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
object B extends CC[Boolean]

for {
  M(map) <- List(JSON.parseFull(jsonString))
  L(languages) = map.get("languages")
  language <- languages
  M(lang) = Some(language)
  S(name) = lang.get("name")
  B(active) = lang.get("is_active")
  D(completeness) = lang.get("completeness")
} yield {
  (name, active, completeness)
}

当然,这并不能避免错误。如果缺少任何json节点,这将产生一个空列表。您可以match在执行操作之前使用a 检查节点是否存在。

for {
  M(map) <- Some(JSON.parseFull(jsonString))
} yield {
  map.get("languages") match {
    case L(languages) => {
      for {
        language <- languages
        M(lang) = Some(language)
        S(name) = lang.get("name")
        B(active) = lang.get("is_active")
        D(completeness) = lang.get("completeness")
      } yield {
        (name, active, completeness)
      }        
    }
    case None => "bad json"
  }
}

3
我认为CC不适用可以大大简化为def unapply(a: Option[Any]): Option[T] = a.map(_.asInstanceOf[T])
苏马

Scala 2.12似乎需要';' 在理解中以'='开头的行之前。
akauppi

对我来说,最上面的代码不是“如果缺少任何json节点,就会产生一个空列表”,而是给出了一个MatchError替代代码(Scala 2.12)。需要将for包装在try / catch块中。还有更好的主意吗?
akauppi

7

我尝试了一些方法,赞成使用模式匹配来避免强制转换,但是在收集类型上遇到了类型擦除的麻烦。

主要问题似乎是解析结果的完整类型反映了JSON数据的结构,既麻烦又无法完全声明。我想这就是为什么使用Any截断类型定义的原因。使用任何导致需要铸造。

我已经破解了一个简单明了的东西,但是它非常特定于问题代码所隐含的JSON数据。更一般的东西会更令人满意,但我不确定它是否会很优雅。

implicit def any2string(a: Any)  = a.toString
implicit def any2boolean(a: Any) = a.asInstanceOf[Boolean]
implicit def any2double(a: Any)  = a.asInstanceOf[Double]

case class Language(name: String, isActive: Boolean, completeness: Double)

val languages = JSON.parseFull(jstr) match {
  case Some(x) => {
    val m = x.asInstanceOf[Map[String, List[Map[String, Any]]]]

    m("languages") map {l => Language(l("name"), l("isActive"), l("completeness"))}
  }
  case None => Nil
}

languages foreach {println}

我喜欢隐式用户提取它。
Phil

4
val jsonString =
  """
    |{
    | "languages": [{
    |     "name": "English",
    |     "is_active": true,
    |     "completeness": 2.5
    | }, {
    |     "name": "Latin",
    |     "is_active": false,
    |     "completeness": 0.9
    | }]
    |}
  """.stripMargin

val result = JSON.parseFull(jsonString).map {
  case json: Map[String, List[Map[String, Any]]] =>
    json("languages").map(l => (l("name"), l("is_active"), l("completeness")))
}.get

println(result)

assert( result == List(("English", true, 2.5), ("Latin", false, 0.9)) )

3
最新的scala Unbundled中已弃用该功能。知道如何使用它吗?
Sanket_patil '18 -10-12

4

你可以这样!解析JSON代码非常容易:P

package org.sqkb.service.common.bean

import java.text.SimpleDateFormat

import org.json4s
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._
//import org.sqkb.service.common.kit.{IsvCode}

import scala.util.Try

/**
  *
  */
case class Order(log: String) {

  implicit lazy val formats = org.json4s.DefaultFormats

  lazy val json: json4s.JValue = parse(log)

  lazy val create_time: String = (json \ "create_time").extractOrElse("1970-01-01 00:00:00")
  lazy val site_id: String = (json \ "site_id").extractOrElse("")
  lazy val alipay_total_price: Double = (json \ "alipay_total_price").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val gmv: Double = alipay_total_price
  lazy val pub_share_pre_fee: Double = (json \ "pub_share_pre_fee").extractOpt[String].filter(_.nonEmpty).getOrElse("0").toDouble
  lazy val profit: Double = pub_share_pre_fee

  lazy val trade_id: String = (json \ "trade_id").extractOrElse("")
  lazy val unid: Long = Try((json \ "unid").extractOpt[String].filter(_.nonEmpty).get.toLong).getOrElse(0L)
  lazy val cate_id1: Int = (json \ "cate_id").extractOrElse(0)
  lazy val cate_id2: Int = (json \ "subcate_id").extractOrElse(0)
  lazy val cate_id3: Int = (json \ "cate_id3").extractOrElse(0)
  lazy val cate_id4: Int = (json \ "cate_id4").extractOrElse(0)
  lazy val coupon_id: Long = (json \ "coupon_id").extractOrElse(0)

  lazy val platform: Option[String] = Order.siteMap.get(site_id)


  def time_fmt(fmt: String = "yyyy-MM-dd HH:mm:ss"): String = {
    val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
    val date = dateFormat.parse(this.create_time)
    new SimpleDateFormat(fmt).format(date)
  }

}

2

这是我做Scala Parser组合器库的方式:

import scala.util.parsing.combinator._
class ImprovedJsonParser extends JavaTokenParsers {

  def obj: Parser[Map[String, Any]] =
    "{" ~> repsep(member, ",") <~ "}" ^^ (Map() ++ _)

  def array: Parser[List[Any]] =
    "[" ~> repsep(value, ",") <~ "]"

  def member: Parser[(String, Any)] =
    stringLiteral ~ ":" ~ value ^^ { case name ~ ":" ~ value => (name, value) }

  def value: Parser[Any] = (
    obj
      | array
      | stringLiteral
      | floatingPointNumber ^^ (_.toDouble)
      |"true"
      |"false"
    )

}
object ImprovedJsonParserTest extends ImprovedJsonParser {
  def main(args: Array[String]) {
    val jsonString =
    """
      {
        "languages": [{
            "name": "English",
            "is_active": true,
            "completeness": 2.5
        }, {
            "name": "Latin",
            "is_active": false,
            "completeness": 0.9
        }]
      }
    """.stripMargin


    val result = parseAll(value, jsonString)
    println(result)

  }
}
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.