生成给定字符串的所有排列


418

找到字符串的所有排列的一种优雅方法是什么。例如,的排列ba会是baab,但是较长的字符串如abcdefgh呢?有任何Java实现示例吗?



这是一个非常受欢迎的问题。您可以在此处查看:careercup.com/question?id=3861299
2010年

9
有一个假设需要提及。字符是唯一的。例如,对于字符串“ aaaa”,只有一个答案。为了有一个更普遍的回答,您可以在一组字符串保存,以避免重复
阿夫欣Moazami

1
是否允许重复字符,或者不允许重复字符?一个字符串可以同时出现多个相同字符吗?
安德森·格林

2
阅读理论(或者,如果像我一样懒惰,请访问en.wikipedia.org/wiki/Permutation)并实现一个真正的算法。基本上,您可以生成元素的顺序序列(实际上,它是一个字符串是无关紧要的),并逐步执行这些顺序,直到重新开始为止。避免涉及递归或字符串操作的任何内容。
CurtainDog 2014年

Answers:


601
public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(通过Java编程简介



48
那不是火箭科学,我想出了几乎相同的答案。轻微调整:n==0您可以在之前停下来一个关卡n==1并打印出来,而不必重复进行直到prefix + str
lambshaanxy 2012年

7
“时间和空间的复杂性是什么?” 没有某种形式的部分答案缓存,任何输出置换的算法都是o(n!),因为置换问题的结果集是输入的阶乘。
jeremyjjbrown

9
优雅,是的。但是,转换为char数组并交换以生成排列的解决方案将需要更少的复制并更少的垃圾。同样,该算法无法考虑重复字符。
基因

20
@AfshinMoazami我认为str.substring(i + 1,n)可以替换为str.substring(i + 1)。使用str.substring(i)将导致java.lang.StackOverflowError。
Ayusman

196

使用递归。

  • 依次尝试将每个字母作为第一个字母,然后使用递归调用找到其余字母的所有排列。
  • 基本情况是,当输入为空字符串时,唯一的排列就是空字符串。

3
如何将返回类型添加到permute方法中?编译器无法确定每次迭代时此方法的返回类型,即使它显然是String类型。
user1712095 2014年

您如何确保此方法中的不同排列?
kapad

70

这是我基于“破解编码面试”(P54)的思想的解决方案:

/**
 * List permutations of a string.
 * 
 * @param s the input string
 * @return  the list of permutations
 */
public static ArrayList<String> permutation(String s) {
    // The result
    ArrayList<String> res = new ArrayList<String>();
    // If input string's length is 1, return {s}
    if (s.length() == 1) {
        res.add(s);
    } else if (s.length() > 1) {
        int lastIndex = s.length() - 1;
        // Find out the last character
        String last = s.substring(lastIndex);
        // Rest of the string
        String rest = s.substring(0, lastIndex);
        // Perform permutation on the rest string and
        // merge with the last character
        res = merge(permutation(rest), last);
    }
    return res;
}

/**
 * @param list a result of permutation, e.g. {"ab", "ba"}
 * @param c    the last character
 * @return     a merged new list, e.g. {"cab", "acb" ... }
 */
public static ArrayList<String> merge(ArrayList<String> list, String c) {
    ArrayList<String> res = new ArrayList<>();
    // Loop through all the string in the list
    for (String s : list) {
        // For each string, insert the last character to all possible positions
        // and add them to the new list
        for (int i = 0; i <= s.length(); ++i) {
            String ps = new StringBuffer(s).insert(i, c).toString();
            res.add(ps);
        }
    }
    return res;
}

运行字符串“ abcd”的输出:

  • 步骤1:合并[a]和b:[ba,ab]

  • 步骤2:合并[ba,ab]和c:[cba,bca,bac,cab,acb,abc]

  • 步骤3:合并[cba,bca,bac,cab,acb,abc]和d:[dcba,cdba,cbda,cbad,dbca,bdca,bcda,bcad,dbac,bdac,badc,bacd,dcab,cdab,cadb ,cabd,dacb,adcb,acdb,acbd,dabc,adbc,abdc,abcd]


第6版《破解编码面试书》中的第(71)页。:)
KarimIhab

5
这真的是一个好的解决方案吗?它依赖于将结果存储在列表中,因此对于较短的输入字符串,它会失去控制。
Androrider '16

合并是做什么的?
Basavaraj Walikar '19

它在列表中每个字符串的每个可能位置插入c,因此,如果列表仅包含[“ b”]且c为“ a”,则合并结果为[“ ab”,“ ba”], 此处与Swift gist.github
Dania Delbani

53

在这里和其他论坛中提供的所有解决方案中,我最喜欢Mark Byers。这种描述实际上使我自己思考并编写代码。太糟糕了,因为我是新手,所以我无法投票赞成他的解决方案。
无论如何,这是我对他的描述的实现

public class PermTest {

    public static void main(String[] args) throws Exception {
        String str = "abcdef";
        StringBuffer strBuf = new StringBuffer(str);
        doPerm(strBuf,0);
    }

    private static void doPerm(StringBuffer str, int index){

        if(index == str.length())
            System.out.println(str);            
        else { //recursively solve this by placing all other chars at current first pos
            doPerm(str, index+1);
            for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
                swap(str,index, i);
                doPerm(str, index+1);
                swap(str,i, index);//restore back my string buffer
            }
        }
    }

    private  static void swap(StringBuffer str, int pos1, int pos2){
        char t1 = str.charAt(pos1);
        str.setCharAt(pos1, str.charAt(pos2));
        str.setCharAt(pos2, t1);
    }
}   

我喜欢此解决方案优先于此线程中的第一个解决方案,因为该解决方案使用StringBuffer。我不会说我的解决方案不会创建任何临时字符串(实际上是在调用StringBuffer的system.out.println地方进行toString()的)。但是我只是觉得这比第一个创建太多字符串文字的解决方案要好。可能有一些表现出色的人可以根据“内存”来评估这一点(因为“时间”已经由于额外的“交换”而滞后了)


为什么不只是做if(index == str.length())doPerm(str, index + 1);?这里currPos似乎没有必要。
Robur_131 '19

抱歉,您可以详细说明这个问题吗?您是否只是建议不要使用额外的变量currPos(由于多次出现以及为了提高可读性而使用),否则请粘贴您建议查看的解决方案
srikanth yaradla

嗯,我知道您的意思是使用向前索引在基本条件上进行更改。工作良好。只是我介绍的解决方案主要受到当时其他解决方案的影响,这些解决方案通常会传递截断的字符串而不是原始字符串(这种情况下0有意义)。不过,感谢您的指点。自从我登录该网站以来已经有好几年了,我将看看是否可以编辑。
srikanth yaradla

22

如果您要存储和返回解决方案字符串,则Java中最基本的解决方案是使用递归+ Set(以避免重复):

public static Set<String> generatePerm(String input)
{
    Set<String> set = new HashSet<String>();
    if (input == "")
        return set;

    Character a = input.charAt(0);

    if (input.length() > 1)
    {
        input = input.substring(1);

        Set<String> permSet = generatePerm(input);

        for (String x : permSet)
        {
            for (int i = 0; i <= x.length(); i++)
            {
                set.add(x.substring(0, i) + a + x.substring(i));
            }
        }
    }
    else
    {
        set.add(a + "");
    }
    return set;
}

2
这个算法的时间复杂度是多少?
ashisahu

1
@ashisahu O(n!),因为我们有n!给定长度为n的字符串中的排列。
Zok

17

以前的所有贡献者在解释和提供代码方面都做得很出色。我认为我也应该分享这种方法,因为它也可能对某人有所帮助。该解决方案基于(堆算法

几件事情:

  1. 请注意,excel中描述的最后一项只是为了帮助您更好地可视化逻辑。因此,最后一列中的实际值为2,1,0(如果要运行代码,因为我们要处理数组,并且数组以0开头)。

  2. 交换算法基于当前位置的偶数或奇数发生。如果您查看swap方法的调用位置,这是很容易理解的,您可以看到发生了什么。

这是发生了什么: 在此处输入图片说明

public static void main(String[] args) {

        String ourword = "abc";
        String[] ourArray = ourword.split("");
        permute(ourArray, ourArray.length);

    }

    private static void swap(String[] ourarray, int right, int left) {
        String temp = ourarray[right];
        ourarray[right] = ourarray[left];
        ourarray[left] = temp;
    }

    public static void permute(String[] ourArray, int currentPosition) {
        if (currentPosition == 1) {
            System.out.println(Arrays.toString(ourArray));
        } else {
            for (int i = 0; i < currentPosition; i++) {
                // subtract one from the last position (here is where you are
                // selecting the the next last item 
                permute(ourArray, currentPosition - 1);

                // if it's odd position
                if (currentPosition % 2 == 1) {
                    swap(ourArray, 0, currentPosition - 1);
                } else {
                    swap(ourArray, i, currentPosition - 1);
                }
            }
        }
    }

11

这是没有递归

public static void permute(String s) {
    if(null==s || s.isEmpty()) {
        return;
    }

    // List containing words formed in each iteration 
    List<String> strings = new LinkedList<String>();
    strings.add(String.valueOf(s.charAt(0))); // add the first element to the list

     // Temp list that holds the set of strings for 
     //  appending the current character to all position in each word in the original list
    List<String> tempList = new LinkedList<String>(); 

    for(int i=1; i< s.length(); i++) {

        for(int j=0; j<strings.size(); j++) {
            tempList.addAll(merge(s.charAt(i), strings.get(j)));
                        }
        strings.removeAll(strings);
        strings.addAll(tempList);

        tempList.removeAll(tempList);

    }

    for(int i=0; i<strings.size(); i++) {
        System.out.println(strings.get(i));
    }
}

/**
 * helper method that appends the given character at each position in the given string 
 * and returns a set of such modified strings 
 * - set removes duplicates if any(in case a character is repeated)
 */
private static Set<String> merge(Character c,  String s) {
    if(s==null || s.isEmpty()) {
        return null;
    }

    int len = s.length();
    StringBuilder sb = new StringBuilder();
    Set<String> list = new HashSet<String>();

    for(int i=0; i<= len; i++) {
        sb = new StringBuilder();
        sb.append(s.substring(0, i) + c + s.substring(i, len));
        list.add(sb.toString());
    }

    return list;
}

此解决方案似乎 System.out.println(permute("AABBC").size());显示45,但实际上是5!= 120
Mladen Adamovic

11

让我们以输入abc为例。

首先从集合(c)中的最后一个元素()开始["c"],然后将第二个最后一个元素(b)添加到其前面,结尾和中间的每个可能位置,使其成为第二个元素["bc", "cb"],然后以相同的方式添加下一个元素从后面(a)到集合中的每个字符串:

"a" + "bc" = ["abc", "bac", "bca"]  and  "a" + "cb" = ["acb" ,"cab", "cba"] 

因此,整个排列:

["abc", "bac", "bca","acb" ,"cab", "cba"]

码:

public class Test 
{
    static Set<String> permutations;
    static Set<String> result = new HashSet<String>();

    public static Set<String> permutation(String string) {
        permutations = new HashSet<String>();

        int n = string.length();
        for (int i = n - 1; i >= 0; i--) 
        {
            shuffle(string.charAt(i));
        }
        return permutations;
    }

    private static void shuffle(char c) {
        if (permutations.size() == 0) {
            permutations.add(String.valueOf(c));
        } else {
            Iterator<String> it = permutations.iterator();
            for (int i = 0; i < permutations.size(); i++) {

                String temp1;
                for (; it.hasNext();) {
                    temp1 = it.next();
                    for (int k = 0; k < temp1.length() + 1; k += 1) {
                        StringBuilder sb = new StringBuilder(temp1);

                        sb.insert(k, c);

                        result.add(sb.toString());
                    }
                }
            }
            permutations = result;
            //'result' has to be refreshed so that in next run it doesn't contain stale values.
            result = new HashSet<String>();
        }
    }

    public static void main(String[] args) {
        Set<String> result = permutation("abc");

        System.out.println("\nThere are total of " + result.size() + " permutations:");
        Iterator<String> it = result.iterator();
        while (it.hasNext()) {
            System.out.println(it.next());
        }
    }
}

1
我喜欢您的解决方案。非常直观,解释也很好。非常感谢你。
user2585781

9

好吧,这是一个优雅的,非递归的O(n!)解决方案:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }

仅当单词少于4个字母时,此解决方案才有效,否则结果数组中只有一半包含唯一单词。
Maksim Maksimov,

5

一种简单的解决方案是仅使用两个指针来递归交换字符。

public static void main(String[] args)
{
    String str="abcdefgh";
    perm(str);
}
public static void perm(String str)
{  char[] char_arr=str.toCharArray();
    helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
    if(i==char_arr.length-1)
    {
        // print the shuffled string 
            String str="";
            for(int j=0; j<char_arr.length; j++)
            {
                str=str+char_arr[j];
            }
            System.out.println(str);
    }
    else
    {
    for(int j=i; j<char_arr.length; j++)
    {
        char tmp = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp;
        helper(char_arr,i+1);
        char tmp1 = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp1;
    }
}
}

这类似于此处给出的解决方案:geeksforgeeks.org/…,涉及回溯和时间复杂度O(n * n!)。
Nakul Kumar '02

5

python实现

def getPermutation(s, prefix=''):
        if len(s) == 0:
                print prefix
        for i in range(len(s)):
                getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )



getPermutation('abcd','')

4

这对我有用。

import java.util.Arrays;

public class StringPermutations{
    public static void main(String args[]) {
        String inputString = "ABC";
        permute(inputString.toCharArray(), 0, inputString.length()-1);
    }

    public static void permute(char[] ary, int startIndex, int endIndex) {
        if(startIndex == endIndex){
            System.out.println(String.valueOf(ary));
        }else{
            for(int i=startIndex;i<=endIndex;i++) {
                 swap(ary, startIndex, i );
                 permute(ary, startIndex+1, endIndex);
                 swap(ary, startIndex, i );
            }
        }
    }

    public static void swap(char[] ary, int x, int y) {
        char temp = ary[x];
        ary[x] = ary[y];
        ary[y] = temp;
    }
}

3

使用递归。

当输入是一个空字符串时,唯一的排列是一个空字符串。尝试将字符串中的每个字母作为第一个字母,然后使用递归调用找到其余字母的所有排列。

import java.util.ArrayList;
import java.util.List;

class Permutation {
    private static List<String> permutation(String prefix, String str) {
        List<String> permutations = new ArrayList<>();
        int n = str.length();
        if (n == 0) {
            permutations.add(prefix);
        } else {
            for (int i = 0; i < n; i++) {
                permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
            }
        }
        return permutations;
    }

    public static void main(String[] args) {
        List<String> perms = permutation("", "abcd");

        String[] array = new String[perms.size()];
        for (int i = 0; i < perms.size(); i++) {
            array[i] = perms.get(i);
        }

        int x = array.length;

        for (final String anArray : array) {
            System.out.println(anArray);
        }
    }
}

3

让我尝试用Kotlin解决此问题:

fun <T> List<T>.permutations(): List<List<T>> {
    //escape case
    if (this.isEmpty()) return emptyList()

    if (this.size == 1) return listOf(this)

    if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))

    //recursive case
    return this.flatMap { lastItem ->
        this.minus(lastItem).permutations().map { it.plus(lastItem) }
    }
}

核心概念:将长列表分解为较小的列表+递归

示例列表[1、2、3、4]的详细答案:

即使只列出4个列表,尝试列出您脑海中所有可能的排列也已经很令人困惑,而我们需要做的就是避免这种情况。我们很容易理解如何制作大小为0、1和2的列表的所有排列,因此我们要做的就是将它们分解为这些大小中的任何一个,并将它们正确地组合起来。想象一下大奖机:该算法将从右到左开始旋转,然后写下来

  1. 当列表大小为0或1时,返回空/列表1
  2. 处理列表大小为2时(例如[3,4]),并生成2个排列([3,4]&[4,3])
  3. 对于每个项目,将其标记为最后一个,并在列表中找到该项目其余部分的所有排列。(例如,将[4]放在桌子上,然后再次将[1,2,3]放入排列中)
  4. 现在有了所有排列的孩子,将自己放回列表的末尾(例如:[1、2、3] [,4],[1、3、2] [,4],[2、3、1] [,4],...)

2
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
    public static void main(String[] args) throws IOException {
        hello h = new hello();
        h.printcomp();
    }
      int fact=1;
    public void factrec(int a,int k){
        if(a>=k)
        {fact=fact*k;
        k++;
        factrec(a,k);
        }
        else
        {System.out.println("The string  will have "+fact+" permutations");
        }
        }
    public void printcomp(){
        String str;
        int k;
        Scanner in = new Scanner(System.in);
        System.out.println("enter the string whose permutations has to b found");
        str=in.next();
        k=str.length();
        factrec(k,1);
        String[] arr =new String[fact];
        char[] array = str.toCharArray();
        while(p<fact)
        printcomprec(k,array,arr);
            // if incase u need array containing all the permutation use this
            //for(int d=0;d<fact;d++)         
        //System.out.println(arr[d]);
    }
    int y=1;
    int p = 0;
    int g=1;
    int z = 0;
    public void printcomprec(int k,char array[],String arr[]){
        for (int l = 0; l < k; l++) {
            for (int b=0;b<k-1;b++){
            for (int i=1; i<k-g; i++) {
                char temp;
                String stri = "";
                temp = array[i];
                array[i] = array[i + g];
                array[i + g] = temp;
                for (int j = 0; j < k; j++)
                    stri += array[j];
                arr[z] = stri;
                System.out.println(arr[z] + "   " + p++);
                z++;
            }
            }
            char temp;
            temp=array[0];
            array[0]=array[y];
            array[y]=temp;
            if (y >= k-1)
                y=y-(k-1);
            else
                y++;
        }
        if (g >= k-1)
            g=1;
        else
            g++;
    }

}

2
/** Returns an array list containing all
 * permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
    ArrayList<String> perms = new ArrayList<>();
    int slen = s.length();
    if (slen > 0) {
        // Add the first character from s to the perms array list.
        perms.add(Character.toString(s.charAt(0)));

        // Repeat for all additional characters in s.
        for (int i = 1;  i < slen;  ++i) {

            // Get the next character from s.
            char c = s.charAt(i);

            // For each of the strings currently in perms do the following:
            int size = perms.size();
            for (int j = 0;  j < size;  ++j) {

                // 1. remove the string
                String p = perms.remove(0);
                int plen = p.length();

                // 2. Add plen + 1 new strings to perms.  Each new string
                //    consists of the removed string with the character c
                //    inserted into it at a unique location.
                for (int k = 0;  k <= plen;  ++k) {
                    perms.add(p.substring(0, k) + c + p.substring(k));
                }
            }
        }
    }
    return perms;
}

2

这是一个简单的Java极简递归解决方案:

public static ArrayList<String> permutations(String s) {
    ArrayList<String> out = new ArrayList<String>();
    if (s.length() == 1) {
        out.add(s);
        return out;
    }
    char first = s.charAt(0);
    String rest = s.substring(1);
    for (String permutation : permutations(rest)) {
        out.addAll(insertAtAllPositions(first, permutation));
    }
    return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
    ArrayList<String> out = new ArrayList<String>();
    for (int i = 0; i <= s.length(); ++i) {
        String inserted = s.substring(0, i) + ch + s.substring(i);
        out.add(inserted);
    }
    return out;
}

2

我们可以使用阶乘来查找以特定字母开头的字符串。

示例:输入abcd(3!) == 6字符串将以的每个字母开头abcd

static public int facts(int x){
    int sum = 1;
    for (int i = 1; i < x; i++) {
        sum *= (i+1);
    }
    return sum;
}

public static void permutation(String str) {
    char[] str2 = str.toCharArray();
    int n = str2.length;
    int permutation = 0;
    if (n == 1) {
        System.out.println(str2[0]);
    } else if (n == 2) {
        System.out.println(str2[0] + "" + str2[1]);
        System.out.println(str2[1] + "" + str2[0]);
    } else {
        for (int i = 0; i < n; i++) {
            if (true) {
                char[] str3 = str.toCharArray();
                char temp = str3[i];
                str3[i] = str3[0];
                str3[0] = temp;
                str2 = str3;
            }

            for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
                if (j != n-1) {
                    char temp1 = str2[j+1];
                    str2[j+1] = str2[j];
                    str2[j] = temp1;
                } else {
                    char temp1 = str2[n-1];
                    str2[n-1] = str2[1];
                    str2[1] = temp1;
                    j = 1;
                } // end of else block
                permutation++;
                System.out.print("permutation " + permutation + " is   -> ");
                for (int k = 0; k < n; k++) {
                    System.out.print(str2[k]);
                } // end of loop k
                System.out.println();
            } // end of loop j
        } // end of loop i
    }
}

2

这是我通过对排列和递归函数调用的基本了解而完成的。需要一些时间,但需要独立完成。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出[abc, acb, bac, bca, cab, cba]

其背后的基本逻辑是

对于每个字符,将其视为第一个字符并找到剩余字符的组合。例如[abc](Combination of abc)->

  1. a->[bc](a x Combination of (bc))->{abc,acb}
  2. b->[ac](b x Combination of (ac))->{bac,bca}
  3. c->[ab](c x Combination of (ab))->{cab,cba}

然后递归调用每一个[bc][ac][ab]独立。


2

无需递归的Java实现

public Set<String> permutate(String s){
    Queue<String> permutations = new LinkedList<String>();
    Set<String> v = new HashSet<String>();
    permutations.add(s);

    while(permutations.size()!=0){
        String str = permutations.poll();
        if(!v.contains(str)){
            v.add(str);
            for(int i = 0;i<str.length();i++){
                String c = String.valueOf(str.charAt(i));
                permutations.add(str.substring(i+1) + c +  str.substring(0,i));
            }
        }
    }
    return v;
}

1

//将每个字符插入数组列表

static ArrayList al = new ArrayList();

private static void findPermutation (String str){
    for (int k = 0; k < str.length(); k++) {
        addOneChar(str.charAt(k));
    }
}

//insert one char into ArrayList
private static void addOneChar(char ch){
    String lastPerStr;
    String tempStr;
    ArrayList locAl = new ArrayList();
    for (int i = 0; i < al.size(); i ++ ){
        lastPerStr = al.get(i).toString();
        //System.out.println("lastPerStr: " + lastPerStr);
        for (int j = 0; j <= lastPerStr.length(); j++) {
            tempStr = lastPerStr.substring(0,j) + ch + 
                    lastPerStr.substring(j, lastPerStr.length());
            locAl.add(tempStr);
            //System.out.println("tempStr: " + tempStr);
        }
    }
    if(al.isEmpty()){
        al.add(ch);
    } else {
        al.clear();
        al = locAl;
    }
}

private static void printArrayList(ArrayList al){
    for (int i = 0; i < al.size(); i++) {
        System.out.print(al.get(i) + "  ");
    }
}

我认为此答案没有用,因为它不包含任何解释,并且使用与其他确实提供解释的答案相同的算法。
Bernhard Barker 2014年

1
//Rotate and create words beginning with all letter possible and push to stack 1

//Read from stack1 and for each word create words with other letters at the next location by rotation and so on 

/*  eg : man

    1. push1 - man, anm, nma
    2. pop1 - nma ,  push2 - nam,nma
       pop1 - anm ,  push2 - amn,anm
       pop1 - man ,  push2 - mna,man
*/

public class StringPermute {

    static String str;
    static String word;
    static int top1 = -1;
    static int top2 = -1;
    static String[] stringArray1;
    static String[] stringArray2;
    static int strlength = 0;

    public static void main(String[] args) throws IOException {
        System.out.println("Enter String : ");
        InputStreamReader isr = new InputStreamReader(System.in);
        BufferedReader bfr = new BufferedReader(isr);
        str = bfr.readLine();
        word = str;
        strlength = str.length();
        int n = 1;
        for (int i = 1; i <= strlength; i++) {
            n = n * i;
        }
        stringArray1 = new String[n];
        stringArray2 = new String[n];
        push(word, 1);
        doPermute();
        display();
    }

    public static void push(String word, int x) {
        if (x == 1)
            stringArray1[++top1] = word;
        else
            stringArray2[++top2] = word;
    }

    public static String pop(int x) {
        if (x == 1)
            return stringArray1[top1--];
        else
            return stringArray2[top2--];
    }

    public static void doPermute() {

        for (int j = strlength; j >= 2; j--)
            popper(j);

    }

    public static void popper(int length) {
        // pop from stack1 , rotate each word n times and push to stack 2
        if (top1 > -1) {
            while (top1 > -1) {
                word = pop(1);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 2);
                }
            }
        }
        // pop from stack2 , rotate each word n times w.r.t position and push to
        // stack 1
        else {
            while (top2 > -1) {
                word = pop(2);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 1);
                }
            }
        }

    }

    public static void rotate(int position) {
        char[] charstring = new char[100];
        for (int j = 0; j < word.length(); j++)
            charstring[j] = word.charAt(j);

        int startpos = strlength - position;
        char temp = charstring[startpos];
        for (int i = startpos; i < strlength - 1; i++) {
            charstring[i] = charstring[i + 1];
        }
        charstring[strlength - 1] = temp;
        word = new String(charstring).trim();
    }

    public static void display() {
        int top;
        if (top1 > -1) {
            while (top1 > -1)
                System.out.println(stringArray1[top1--]);
        } else {
            while (top2 > -1)
                System.out.println(stringArray2[top2--]);
        }
    }
}

1

另一种简单的方法是遍历字符串,选择尚未使用的字符并将其放入缓冲区,继续循环直到缓冲区大小等于字符串长度。我更喜欢此回溯解决方案,因为:

  1. 容易明白
  2. 容易避免重复
  3. 输出已排序

这是Java代码:

List<String> permute(String str) {
  if (str == null) {
    return null;
  }

  char[] chars = str.toCharArray();
  boolean[] used = new boolean[chars.length];

  List<String> res = new ArrayList<String>();
  StringBuilder sb = new StringBuilder();

  Arrays.sort(chars);

  helper(chars, used, sb, res);

  return res;
}

void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
  if (sb.length() == chars.length) {
    res.add(sb.toString());
    return;
  }

  for (int i = 0; i < chars.length; i++) {
    // avoid duplicates
    if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
      continue;
    }

    // pick the character that has not used yet
    if (!used[i]) {
      used[i] = true;
      sb.append(chars[i]);

      helper(chars, used, sb, res);

      // back tracking
      sb.deleteCharAt(sb.length() - 1);
      used[i] = false;
    }
  }
}

输入str:1231

输出列表:{1123、1132、1213、1231、1312、1321、2113、2131、2311、3112、3121、3211}

请注意,输出已排序,并且没有重复的结果。


1

无需递归,即使您可以直接计算任何排列,该解决方案也使用泛型来排列任何数组。

是有关此算法的良好信息。

对于C#开发人员来说,这里是更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法具有O(N)的 时间空间复杂度,可以计算每个置换

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

1

字符串的排列:

public static void main(String args[]) {
    permu(0,"ABCD");
}

static void permu(int fixed,String s) {
    char[] chr=s.toCharArray();
    if(fixed==s.length())
        System.out.println(s);
    for(int i=fixed;i<s.length();i++) {
        char c=chr[i];
        chr[i]=chr[fixed];
        chr[fixed]=c;
        permu(fixed+1,new String(chr));
    }   
}

1

这是进行字符串置换的另一种更简单的方法。

public class Solution4 {
public static void main(String[] args) {
    String  a = "Protijayi";
  per(a, 0);

}

static void per(String a  , int start ) {
      //bse case;
    if(a.length() == start) {System.out.println(a);}
    char[] ca = a.toCharArray();
    //swap 
    for (int i = start; i < ca.length; i++) {
        char t = ca[i];
        ca[i] = ca[start];
        ca[start] = t;
        per(new String(ca),start+1);
    }

}//per

}

1

一个考虑重复字符并仅打印唯一字符的,打印给定字符串的所有排列的java实现如下:

import java.util.Set;
import java.util.HashSet;

public class PrintAllPermutations2
{
    public static void main(String[] args)
    {
        String str = "AAC";

    PrintAllPermutations2 permutation = new PrintAllPermutations2();

    Set<String> uniqueStrings = new HashSet<>();

    permutation.permute("", str, uniqueStrings);
}

void permute(String prefixString, String s, Set<String> set)
{
    int n = s.length();

    if(n == 0)
    {
        if(!set.contains(prefixString))
        {
            System.out.println(prefixString);
            set.add(prefixString);
        }
    }
    else
    {
        for(int i=0; i<n; i++)
        {
            permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
        }
    }
}
}

0
/*
     * eg: abc =>{a,bc},{b,ac},{c,ab}
     * =>{ca,b},{cb,a}
     * =>cba,cab
     * =>{ba,c},{bc,a}
     * =>bca,bac
     * =>{ab,c},{ac,b}
     * =>acb,abc
     */
    public void nonRecpermute(String prefix, String word)
    {
        String[] currentstr ={prefix,word};
        Stack<String[]> stack = new Stack<String[]>();
        stack.add(currentstr);
        while(!stack.isEmpty())
        {
            currentstr = stack.pop();
            String currentPrefix = currentstr[0];
            String currentWord = currentstr[1];
            if(currentWord.equals(""))
            {
                System.out.println("Word ="+currentPrefix);
            }
            for(int i=0;i<currentWord.length();i++)
            {
                String[] newstr = new String[2];
                newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
                newstr[1] = currentWord.substring(0, i);
                if(i<currentWord.length()-1)
                {
                    newstr[1] = newstr[1]+currentWord.substring(i+1);
                }
                stack.push(newstr);
            }

        }

    }

0

通过简单地依次将字符串的每个字母依次插入到先前部分结果的所有位置,可以迭代地完成此操作。

我们开始[A],这与B[BA, AB],并用C[CBA, BCA, BAC, CAB, etc]

运行时间为O(n!),对于测试用例ABCD,为1 x 2 x 3 x 4

在上述产品中,“ 1是” A,“ 2是” B等。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

0

这是一个Java实现:

/* All Permutations of a String */

import java.util.*;
import java.lang.*;
import java.io.*;

/* Complexity O(n*n!) */
class Ideone
{
     public static ArrayList<String> strPerm(String str, ArrayList<String> list)
     {
        int len = str.length();
        if(len==1){
            list.add(str);
            return list;
        }

        list = strPerm(str.substring(0,len-1),list);
        int ls = list.size();
        char ap = str.charAt(len-1);
        for(int i=0;i<ls;i++){
            String temp = list.get(i);
            int tl = temp.length();
            for(int j=0;j<=tl;j++){
                list.add(temp.substring(0,j)+ap+temp.substring(j,tl));  
            }
        }

        while(true){
            String temp = list.get(0);
            if(temp.length()<len)
                list.remove(temp);
            else
                break;
        }

        return list;
    }

    public static void main (String[] args) throws java.lang.Exception
    {
        String str = "abc";
        ArrayList<String> list = new ArrayList<>();

        list = strPerm(str,list);
        System.out.println("Total Permutations : "+list.size());
        for(int i=0;i<list.size();i++)
            System.out.println(list.get(i));

    }
}

http://ideone.com/nWPb3k

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.