Firebase的新Firestore数据库本身是否支持基于位置的地理位置查询?即在10英里内查找帖子,还是找到50个最近的帖子?
我看到实时Firebase数据库已有一些项目,例如geofire等项目,这些项目也可以改编成Firestore吗?
Answers:
更新:Firestore当前不支持实际的GeoPoint查询,因此虽然以下查询成功执行,但它仅按纬度而不是经度进行过滤,因此将返回许多附近的结果。最好的解决方案是使用geohash。要了解自己如何做类似的事情,请观看此视频。
这可以通过创建一个小于查询的边界框来完成。至于效率,我不能说。
注意,应检查纬度/经度偏移〜1英里的精度,但这是一种快速的方法:
SWIFT 3.0版本
func getDocumentNearBy(latitude: Double, longitude: Double, distance: Double) {
// ~1 mile of lat and lon in degrees
let lat = 0.0144927536231884
let lon = 0.0181818181818182
let lowerLat = latitude - (lat * distance)
let lowerLon = longitude - (lon * distance)
let greaterLat = latitude + (lat * distance)
let greaterLon = longitude + (lon * distance)
let lesserGeopoint = GeoPoint(latitude: lowerLat, longitude: lowerLon)
let greaterGeopoint = GeoPoint(latitude: greaterLat, longitude: greaterLon)
let docRef = Firestore.firestore().collection("locations")
let query = docRef.whereField("location", isGreaterThan: lesserGeopoint).whereField("location", isLessThan: greaterGeopoint)
query.getDocuments { snapshot, error in
if let error = error {
print("Error getting documents: \(error)")
} else {
for document in snapshot!.documents {
print("\(document.documentID) => \(document.data())")
}
}
}
}
func run() {
// Get all locations within 10 miles of Google Headquarters
getDocumentNearBy(latitude: 37.422000, longitude: -122.084057, distance: 10)
}
更新:Firestore当前不支持实际的GeoPoint查询,因此虽然以下查询成功执行,但它仅按纬度而不是经度进行过滤,因此将返回许多附近的结果。最好的解决方案是使用geohash。要了解自己如何做类似的事情,请观看此视频。
(首先让我为这篇文章中的所有代码道歉,我只是希望任何阅读此答案的人都能轻松地重现该功能。)
为了解决OP的相同问题,起初,我将GeoFire库与Firestore配合使用(通过查看该库,您可以了解有关Geo -stuff的很多知识)。然后,我意识到我不介意位置是否精确返回了一个圆。我只是想以某种方式获得“附近”的位置。
我不敢相信我花了多长时间才意识到这一点,但是您可以使用SW角和NE角在GeoPoint字段上执行双重不等式查询,以获取围绕中心点的边界框中的位置。
因此,我做了一个JavaScript函数,如下所示(这基本上是Ryan Lee的答案的JS版本)。
/**
* Get locations within a bounding box defined by a center point and distance from from the center point to the side of the box;
*
* @param {Object} area an object that represents the bounding box
* around a point in which locations should be retrieved
* @param {Object} area.center an object containing the latitude and
* longitude of the center point of the bounding box
* @param {number} area.center.latitude the latitude of the center point
* @param {number} area.center.longitude the longitude of the center point
* @param {number} area.radius (in kilometers) the radius of a circle
* that is inscribed in the bounding box;
* This could also be described as half of the bounding box's side length.
* @return {Promise} a Promise that fulfills with an array of all the
* retrieved locations
*/
function getLocations(area) {
// calculate the SW and NE corners of the bounding box to query for
const box = utils.boundingBoxCoordinates(area.center, area.radius);
// construct the GeoPoints
const lesserGeopoint = new GeoPoint(box.swCorner.latitude, box.swCorner.longitude);
const greaterGeopoint = new GeoPoint(box.neCorner.latitude, box.neCorner.longitude);
// construct the Firestore query
let query = firebase.firestore().collection('myCollection').where('location', '>', lesserGeopoint).where('location', '<', greaterGeopoint);
// return a Promise that fulfills with the locations
return query.get()
.then((snapshot) => {
const allLocs = []; // used to hold all the loc data
snapshot.forEach((loc) => {
// get the data
const data = loc.data();
// calculate a distance from the center
data.distanceFromCenter = utils.distance(area.center, data.location);
// add to the array
allLocs.push(data);
});
return allLocs;
})
.catch((err) => {
return new Error('Error while retrieving events');
});
}
上面的函数还在每个返回的位置数据中添加了一个.distanceFromCenter属性,以便您只需检查该距离是否在所需范围内即可获得类似圆的行为。
我在上面的函数中使用了两个util函数,因此这也是这些代码。(以下所有util函数实际上都是从GeoFire库改编而成的。)
距离():
/**
* Calculates the distance, in kilometers, between two locations, via the
* Haversine formula. Note that this is approximate due to the fact that
* the Earth's radius varies between 6356.752 km and 6378.137 km.
*
* @param {Object} location1 The first location given as .latitude and .longitude
* @param {Object} location2 The second location given as .latitude and .longitude
* @return {number} The distance, in kilometers, between the inputted locations.
*/
distance(location1, location2) {
const radius = 6371; // Earth's radius in kilometers
const latDelta = degreesToRadians(location2.latitude - location1.latitude);
const lonDelta = degreesToRadians(location2.longitude - location1.longitude);
const a = (Math.sin(latDelta / 2) * Math.sin(latDelta / 2)) +
(Math.cos(degreesToRadians(location1.latitude)) * Math.cos(degreesToRadians(location2.latitude)) *
Math.sin(lonDelta / 2) * Math.sin(lonDelta / 2));
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return radius * c;
}
boundingBoxCoordinates():(这里我粘贴了下面的更多实用程序。)
/**
* Calculates the SW and NE corners of a bounding box around a center point for a given radius;
*
* @param {Object} center The center given as .latitude and .longitude
* @param {number} radius The radius of the box (in kilometers)
* @return {Object} The SW and NE corners given as .swCorner and .neCorner
*/
boundingBoxCoordinates(center, radius) {
const KM_PER_DEGREE_LATITUDE = 110.574;
const latDegrees = radius / KM_PER_DEGREE_LATITUDE;
const latitudeNorth = Math.min(90, center.latitude + latDegrees);
const latitudeSouth = Math.max(-90, center.latitude - latDegrees);
// calculate longitude based on current latitude
const longDegsNorth = metersToLongitudeDegrees(radius, latitudeNorth);
const longDegsSouth = metersToLongitudeDegrees(radius, latitudeSouth);
const longDegs = Math.max(longDegsNorth, longDegsSouth);
return {
swCorner: { // bottom-left (SW corner)
latitude: latitudeSouth,
longitude: wrapLongitude(center.longitude - longDegs),
},
neCorner: { // top-right (NE corner)
latitude: latitudeNorth,
longitude: wrapLongitude(center.longitude + longDegs),
},
};
}
meterToLongitudeDegrees():
/**
* Calculates the number of degrees a given distance is at a given latitude.
*
* @param {number} distance The distance to convert.
* @param {number} latitude The latitude at which to calculate.
* @return {number} The number of degrees the distance corresponds to.
*/
function metersToLongitudeDegrees(distance, latitude) {
const EARTH_EQ_RADIUS = 6378137.0;
// this is a super, fancy magic number that the GeoFire lib can explain (maybe)
const E2 = 0.00669447819799;
const EPSILON = 1e-12;
const radians = degreesToRadians(latitude);
const num = Math.cos(radians) * EARTH_EQ_RADIUS * Math.PI / 180;
const denom = 1 / Math.sqrt(1 - E2 * Math.sin(radians) * Math.sin(radians));
const deltaDeg = num * denom;
if (deltaDeg < EPSILON) {
return distance > 0 ? 360 : 0;
}
// else
return Math.min(360, distance / deltaDeg);
}
wrapLongitude():
/**
* Wraps the longitude to [-180,180].
*
* @param {number} longitude The longitude to wrap.
* @return {number} longitude The resulting longitude.
*/
function wrapLongitude(longitude) {
if (longitude <= 180 && longitude >= -180) {
return longitude;
}
const adjusted = longitude + 180;
if (adjusted > 0) {
return (adjusted % 360) - 180;
}
// else
return 180 - (-adjusted % 360);
}
function degreesToRadians(degrees) {return (degrees * Math.PI)/180;}
自@monkeybonkey首次提出此问题以来,已经引入了一个新项目。该项目称为GEOFirestore。
使用此库,您可以在一个圆圈内执行查询,例如查询文档:
const geoQuery = geoFirestore.query({
center: new firebase.firestore.GeoPoint(10.38, 2.41),
radius: 10.5
});
您可以通过npm安装GeoFirestore。您将必须单独安装Firebase(因为它是GeoFirestore的对等依赖项):
$ npm install geofirestore firebase --save
到目前为止,还没有办法进行这样的查询。SO中还有其他与此相关的问题:
如何在Firebase Cloud Firestore中查询集合中最接近的GeoPoint?
在我当前的Android项目中,当Firebase团队开发本机支持时,我可以使用https://github.com/drfonfon/android-geohash添加geohash字段。
如其他问题中所述,使用Firebase Realtime Database意味着您无法同时按位置和其他字段过滤结果集,这是我首先要切换到Firestore的主要原因。
劫持此线程可望帮助仍在寻找的任何人。Firestore仍然不支持基于地理的查询,并且使用GeoFirestore库也不理想,因为它只能让您按位置搜索,没有别的。
我将其放在一起:https : //github.com/mbramwell1/GeoFire-Android
基本上,您可以使用位置和距离进行附近的搜索:
QueryLocation queryLocation = QueryLocation.fromDegrees(latitude, longitude);
Distance searchDistance = new Distance(1.0, DistanceUnit.KILOMETERS);
geoFire.query()
.whereNearTo(queryLocation, distance)
.build()
.get();
回购中有更多文档。它对我有用,因此请尝试一下,希望它能够满足您的需求。
对于飞镖
///
/// Checks if these coordinates are valid geo coordinates.
/// [latitude] The latitude must be in the range [-90, 90]
/// [longitude] The longitude must be in the range [-180, 180]
/// returns [true] if these are valid geo coordinates
///
bool coordinatesValid(double latitude, double longitude) {
return (latitude >= -90 && latitude <= 90 && longitude >= -180 && longitude <= 180);
}
///
/// Checks if the coordinates of a GeopPoint are valid geo coordinates.
/// [latitude] The latitude must be in the range [-90, 90]
/// [longitude] The longitude must be in the range [-180, 180]
/// returns [true] if these are valid geo coordinates
///
bool geoPointValid(GeoPoint point) {
return (point.latitude >= -90 &&
point.latitude <= 90 &&
point.longitude >= -180 &&
point.longitude <= 180);
}
///
/// Wraps the longitude to [-180,180].
///
/// [longitude] The longitude to wrap.
/// returns The resulting longitude.
///
double wrapLongitude(double longitude) {
if (longitude <= 180 && longitude >= -180) {
return longitude;
}
final adjusted = longitude + 180;
if (adjusted > 0) {
return (adjusted % 360) - 180;
}
// else
return 180 - (-adjusted % 360);
}
double degreesToRadians(double degrees) {
return (degrees * math.pi) / 180;
}
///
///Calculates the number of degrees a given distance is at a given latitude.
/// [distance] The distance to convert.
/// [latitude] The latitude at which to calculate.
/// returns the number of degrees the distance corresponds to.
double kilometersToLongitudeDegrees(double distance, double latitude) {
const EARTH_EQ_RADIUS = 6378137.0;
// this is a super, fancy magic number that the GeoFire lib can explain (maybe)
const E2 = 0.00669447819799;
const EPSILON = 1e-12;
final radians = degreesToRadians(latitude);
final numerator = math.cos(radians) * EARTH_EQ_RADIUS * math.pi / 180;
final denom = 1 / math.sqrt(1 - E2 * math.sin(radians) * math.sin(radians));
final deltaDeg = numerator * denom;
if (deltaDeg < EPSILON) {
return distance > 0 ? 360.0 : 0.0;
}
// else
return math.min(360.0, distance / deltaDeg);
}
///
/// Defines the boundingbox for the query based
/// on its south-west and north-east corners
class GeoBoundingBox {
final GeoPoint swCorner;
final GeoPoint neCorner;
GeoBoundingBox({this.swCorner, this.neCorner});
}
///
/// Defines the search area by a circle [center] / [radiusInKilometers]
/// Based on the limitations of FireStore we can only search in rectangles
/// which means that from this definition a final search square is calculated
/// that contains the circle
class Area {
final GeoPoint center;
final double radiusInKilometers;
Area(this.center, this.radiusInKilometers):
assert(geoPointValid(center)), assert(radiusInKilometers >= 0);
factory Area.inMeters(GeoPoint gp, int radiusInMeters) {
return new Area(gp, radiusInMeters / 1000.0);
}
factory Area.inMiles(GeoPoint gp, int radiusMiles) {
return new Area(gp, radiusMiles * 1.60934);
}
/// returns the distance in km of [point] to center
double distanceToCenter(GeoPoint point) {
return distanceInKilometers(center, point);
}
}
///
///Calculates the SW and NE corners of a bounding box around a center point for a given radius;
/// [area] with the center given as .latitude and .longitude
/// and the radius of the box (in kilometers)
GeoBoundingBox boundingBoxCoordinates(Area area) {
const KM_PER_DEGREE_LATITUDE = 110.574;
final latDegrees = area.radiusInKilometers / KM_PER_DEGREE_LATITUDE;
final latitudeNorth = math.min(90.0, area.center.latitude + latDegrees);
final latitudeSouth = math.max(-90.0, area.center.latitude - latDegrees);
// calculate longitude based on current latitude
final longDegsNorth = kilometersToLongitudeDegrees(area.radiusInKilometers, latitudeNorth);
final longDegsSouth = kilometersToLongitudeDegrees(area.radiusInKilometers, latitudeSouth);
final longDegs = math.max(longDegsNorth, longDegsSouth);
return new GeoBoundingBox(
swCorner: new GeoPoint(latitudeSouth, wrapLongitude(area.center.longitude - longDegs)),
neCorner: new GeoPoint(latitudeNorth, wrapLongitude(area.center.longitude + longDegs)));
}
///
/// Calculates the distance, in kilometers, between two locations, via the
/// Haversine formula. Note that this is approximate due to the fact that
/// the Earth's radius varies between 6356.752 km and 6378.137 km.
/// [location1] The first location given
/// [location2] The second location given
/// sreturn the distance, in kilometers, between the two locations.
///
double distanceInKilometers(GeoPoint location1, GeoPoint location2) {
const radius = 6371; // Earth's radius in kilometers
final latDelta = degreesToRadians(location2.latitude - location1.latitude);
final lonDelta = degreesToRadians(location2.longitude - location1.longitude);
final a = (math.sin(latDelta / 2) * math.sin(latDelta / 2)) +
(math.cos(degreesToRadians(location1.latitude)) *
math.cos(degreesToRadians(location2.latitude)) *
math.sin(lonDelta / 2) *
math.sin(lonDelta / 2));
final c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a));
return radius * c;
}
我刚刚基于https://pub.dartlang.org/packages/firestore_helpers上面的JS代码发布了Flutter软件包
是的,这是一个古老的话题,但是我只想在Java代码上提供帮助。我如何解决经度问题?我使用了Ryan Lee和Michael Teper的代码。
代码:
@Override
public void getUsersForTwentyMiles() {
FirebaseFirestore db = FirebaseFirestore.getInstance();
double latitude = 33.0076665;
double longitude = 35.1011336;
int distance = 20; //20 milles
GeoPoint lg = new GeoPoint(latitude, longitude);
// ~1 mile of lat and lon in degrees
double lat = 0.0144927536231884;
double lon = 0.0181818181818182;
final double lowerLat = latitude - (lat * distance);
final double lowerLon = longitude - (lon * distance);
double greaterLat = latitude + (lat * distance);
final double greaterLon = longitude + (lon * distance);
final GeoPoint lesserGeopoint = new GeoPoint(lowerLat, lowerLon);
final GeoPoint greaterGeopoint = new GeoPoint(greaterLat, greaterLon);
Log.d(LOG_TAG, "local general lovation " + lg);
Log.d(LOG_TAG, "local lesserGeopoint " + lesserGeopoint);
Log.d(LOG_TAG, "local greaterGeopoint " + greaterGeopoint);
//get users for twenty miles by only a latitude
db.collection("users")
.whereGreaterThan("location", lesserGeopoint)
.whereLessThan("location", greaterGeopoint)
.get()
.addOnCompleteListener(new OnCompleteListener<QuerySnapshot>() {
@Override
public void onComplete(@NonNull Task<QuerySnapshot> task) {
if (task.isSuccessful()) {
for (QueryDocumentSnapshot document : task.getResult()) {
UserData user = document.toObject(UserData.class);
//here a longitude condition (myLocation - 20 <= myLocation <= myLocation +20)
if (lowerLon <= user.getUserGeoPoint().getLongitude() && user.getUserGeoPoint().getLongitude() <= greaterLon) {
Log.d(LOG_TAG, "location: " + document.getId());
}
}
} else {
Log.d(LOG_TAG, "Error getting documents: ", task.getException());
}
}
});
}
发出结果后,就在内部将过滤器设置为经度:
if (lowerLon <= user.getUserGeoPoint().getLongitude() && user.getUserGeoPoint().getLongitude() <= greaterLon) {
Log.d(LOG_TAG, "location: " + document.getId());
}
希望对您有所帮助。祝你今天愉快!
在javascript中,您可以简单地
const db = firebase.firestore();
//Geofire
import { GeoCollectionReference, GeoFirestore, GeoQuery, GeoQuerySnapshot } from 'geofirestore';
// Create a GeoFirestore reference
const geofirestore: GeoFirestore = new GeoFirestore(db);
// Create a GeoCollection reference
const geocollection: GeoCollectionReference = geofirestore.collection('<Your_collection_name>');
const query: GeoQuery = geocollectionDrivers.near({
center: new firebase.firestore.GeoPoint(location.latitude, location.longitude),
radius: 10000
});
query.onSnapshot(gquerySnapshot => {
gquerySnapshot.forEach(res => {
console.log(res.data());
})
});
这还没有经过充分测试,但是应该比李安(Ryan Lee)的回答有所改善
我的计算更准确,然后我过滤出答案以删除落在边界框内但不在半径范围内的匹配项
斯威夫特4
func getDocumentNearBy(latitude: Double, longitude: Double, meters: Double) {
let myGeopoint = GeoPoint(latitude:latitude, longitude:longitude )
let r_earth : Double = 6378137 // Radius of earth in Meters
// 1 degree lat in m
let kLat = (2 * Double.pi / 360) * r_earth
let kLon = (2 * Double.pi / 360) * r_earth * __cospi(latitude/180.0)
let deltaLat = meters / kLat
let deltaLon = meters / kLon
let swGeopoint = GeoPoint(latitude: latitude - deltaLat, longitude: longitude - deltaLon)
let neGeopoint = GeoPoint(latitude: latitude + deltaLat, longitude: longitude + deltaLon)
let docRef : CollectionReference = appDelegate.db.collection("restos")
let query = docRef.whereField("location", isGreaterThan: swGeopoint).whereField("location", isLessThan: neGeopoint)
query.getDocuments { snapshot, error in
guard let snapshot = snapshot else {
print("Error fetching snapshot results: \(error!)")
return
}
self.documents = snapshot.documents.filter { (document) in
if let location = document.get("location") as? GeoPoint {
let myDistance = self.distanceBetween(geoPoint1:myGeopoint,geoPoint2:location)
print("myDistance:\(myDistance) distance:\(meters)")
return myDistance <= meters
}
return false
}
}
}
可以精确测量以米为单位的2个地理点之间的距离以进行过滤的功能
func distanceBetween(geoPoint1:GeoPoint, geoPoint2:GeoPoint) -> Double{
return distanceBetween(lat1: geoPoint1.latitude,
lon1: geoPoint1.longitude,
lat2: geoPoint2.latitude,
lon2: geoPoint2.longitude)
}
func distanceBetween(lat1:Double, lon1:Double, lat2:Double, lon2:Double) -> Double{ // generally used geo measurement function
let R : Double = 6378.137; // Radius of earth in KM
let dLat = lat2 * Double.pi / 180 - lat1 * Double.pi / 180;
let dLon = lon2 * Double.pi / 180 - lon1 * Double.pi / 180;
let a = sin(dLat/2) * sin(dLat/2) +
cos(lat1 * Double.pi / 180) * cos(lat2 * Double.pi / 180) *
sin(dLon/2) * sin(dLon/2);
let c = 2 * atan2(sqrt(a), sqrt(1-a));
let d = R * c;
return d * 1000; // meters
}
有一个用于Firestore的GeoFire库,称为Geofirestore:https : //github.com/imperiumlabs/GeoFirestore(免责声明:我帮助开发了它)。它非常易于使用,并且为Firestore提供的功能与Geofire对Firebase Realtime DB的功能相同)
Flutter的变通办法,直到我们在Firestore中进行本机查询以拉取基于经纬度的有序文档:https : //pub.dev/packages/geoflutterfire 一个插件,用于在Firestore中存储地理哈希值并进行查询。
限制:不支持限制