表示Java分数的最佳方法?


100

我正在尝试使用Java中的分数

我想实现算术函数。为此,我首先需要一种规范功能的方法。我知道我只有一个公分母才能将1/6和1/2加起来。我将不得不添加1/6和3/6。天真的方法会让我加2/12和6/12,然后减少。如何以最少的性能损失获得一个共同的分母?哪种算法最适合呢?


版本8(感谢hstoerr):

改进包括:

  • 现在equals()方法与compareTo()方法一致
final class Fraction extends Number {
    private int numerator;
    private int denominator;

    public Fraction(int numerator, int denominator) {
        if(denominator == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if(denominator < 0) {
            numerator *= -1;
            denominator *= -1;
        }
        this.numerator = numerator;
        this.denominator = denominator;
    }

    public Fraction(int numerator) {
        this.numerator = numerator;
        this.denominator = 1;
    }

    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }

    public byte byteValue() {
        return (byte) this.doubleValue();
    }

    public double doubleValue() {
        return ((double) numerator)/((double) denominator);
    }

    public float floatValue() {
        return (float) this.doubleValue();
    }

    public int intValue() {
        return (int) this.doubleValue();
    }

    public long longValue() {
        return (long) this.doubleValue();
    }

    public short shortValue() {
        return (short) this.doubleValue();
    }

    public boolean equals(Fraction frac) {
        return this.compareTo(frac) == 0;
    }

    public int compareTo(Fraction frac) {
        long t = this.getNumerator() * frac.getDenominator();
        long f = frac.getNumerator() * this.getDenominator();
        int result = 0;
        if(t>f) {
            result = 1;
        }
        else if(f>t) {
            result = -1;
        }
        return result;
    }
}

我已经删除了所有以前的版本。我的感谢:


33
扔掉代码,使用Apache Commons :)commons.apache.org/math/userguide/fraction.html
Patrick

3
帕特里克(Patrick)的评论应为+1(如果已将其发布为答案)。在大多数情况下,这是正确的答案;如有效Java所说,“知道并使用这些库”。最初的问题也很明确和有用。
Jonik

注意您接受了我的回答..如果您实际上正在使用该代码,并且发现任何问题或缺少的任何问题,请告诉我!从我的网站给我发电子邮件:vacant-nebula.com/contact/kip
Kip

我建议您编辑“ compareTo”方法,并将“ this.getNumerator()”强制转换为乘法之前的很长时间。否则,代码仍然容易溢出。另外我认为实现Comparable <Fraction>会很好,因为您已经实现了compareTo方法。
Hosam Aly

并且既然您已经走了那么远,那么实现equals和hashCode可能也很有用。
Hosam Aly

Answers:


65

碰巧的是不久前我写了一个BigFraction类,用于解决Euler项目的问题。它保留了BigInteger分子和分母,因此它永远不会溢出。但是对于许多您永远不会溢出的操作来说,这会有点慢。无论如何,请根据需要使用它。我一直很想以某种方式炫耀它。:)

编辑:该代码的最新,最出色的版本,包括单元测试,现在托管在GitHub上,也可以通过Maven Central获得。我将原始代码留在这里,以便此答案不仅仅是一个链接...


import java.math.*;

/**
 * Arbitrary-precision fractions, utilizing BigIntegers for numerator and
 * denominator.  Fraction is always kept in lowest terms.  Fraction is
 * immutable, and guaranteed not to have a null numerator or denominator.
 * Denominator will always be positive (so sign is carried by numerator,
 * and a zero-denominator is impossible).
 */
public final class BigFraction extends Number implements Comparable<BigFraction>
{
  private static final long serialVersionUID = 1L; //because Number is Serializable
  private final BigInteger numerator;
  private final BigInteger denominator;

  public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
  public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);

  /**
   * Constructs a BigFraction with given numerator and denominator.  Fraction
   * will be reduced to lowest terms.  If fraction is negative, negative sign will
   * be carried on numerator, regardless of how the values were passed in.
   */
  public BigFraction(BigInteger numerator, BigInteger denominator)
  {
    if(numerator == null)
      throw new IllegalArgumentException("Numerator is null");
    if(denominator == null)
      throw new IllegalArgumentException("Denominator is null");
    if(denominator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero.");

    //only numerator should be negative.
    if(denominator.signum() < 0)
    {
      numerator = numerator.negate();
      denominator = denominator.negate();
    }

    //create a reduced fraction
    BigInteger gcd = numerator.gcd(denominator);
    this.numerator = numerator.divide(gcd);
    this.denominator = denominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from a whole number.
   */
  public BigFraction(BigInteger numerator)
  {
    this(numerator, BigInteger.ONE, true);
  }

  public BigFraction(long numerator, long denominator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
  }

  public BigFraction(long numerator)
  {
    this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
  }

  /**
   * Constructs a BigFraction from a floating-point number.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  For example, 
   *     System.out.println(new BigFraction(1.1))
   * will print:
   *     2476979795053773/2251799813685248
   * 
   * This is because 1.1 cannot be expressed exactly in binary form.  The
   * given fraction is exactly equal to the internal representation of
   * the double-precision floating-point number.  (Which, for 1.1, is:
   * (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
   * 
   * NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
   * closer to what the user expects.
   */
  public BigFraction(double d)
  {
    if(Double.isInfinite(d))
      throw new IllegalArgumentException("double val is infinite");
    if(Double.isNaN(d))
      throw new IllegalArgumentException("double val is NaN");

    //special case - math below won't work right for 0.0 or -0.0
    if(d == 0)
    {
      numerator = BigInteger.ZERO;
      denominator = BigInteger.ONE;
      return;
    }

    final long bits = Double.doubleToLongBits(d);
    final int sign = (int)(bits >> 63) & 0x1;
    final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
    final long mantissa = bits & 0xfffffffffffffL;

    //number is (-1)^sign * 2^(exponent) * 1.mantissa
    BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
    BigInteger tmpDenominator = BigInteger.ONE;

    //use shortcut: 2^x == 1 << x.  if x is negative, shift the denominator
    if(exponent >= 0)
      tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
    else
      tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));

    //1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
    tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
    tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));

    BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
    numerator = tmpNumerator.divide(gcd);
    denominator = tmpDenominator.divide(gcd);
  }

  /**
   * Constructs a BigFraction from two floating-point numbers.
   * 
   * Warning: round-off error in IEEE floating point numbers can result
   * in answers that are unexpected.  See BigFraction(double) for more
   * information.
   * 
   * NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
   * may give a result closer to what the user expects.
   */
  public BigFraction(double numerator, double denominator)
  {
    if(denominator == 0)
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a new BigFraction from the given BigDecimal object.
   */
  public BigFraction(BigDecimal d)
  {
    this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
         d.scale() < 0 ? BigInteger.ONE                                             : BigInteger.TEN.pow(d.scale()));
  }

  public BigFraction(BigDecimal numerator, BigDecimal denominator)
  {
    if(denominator.equals(BigDecimal.ZERO))
      throw new ArithmeticException("Divide by zero.");

    BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
    this.numerator = tmp.numerator;
    this.denominator = tmp.denominator;
  }

  /**
   * Constructs a BigFraction from a String.  Expected format is numerator/denominator,
   * but /denominator part is optional.  Either numerator or denominator may be a floating-
   * point decimal number, which in the same format as a parameter to the
   * <code>BigDecimal(String)</code> constructor.
   * 
   * @throws NumberFormatException  if the string cannot be properly parsed.
   */
  public BigFraction(String s)
  {
    int slashPos = s.indexOf('/');
    if(slashPos < 0)
    {
      BigFraction res = new BigFraction(new BigDecimal(s));
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
    else
    {
      BigDecimal num = new BigDecimal(s.substring(0, slashPos));
      BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
      BigFraction res = new BigFraction(num, den);
      this.numerator = res.numerator;
      this.denominator = res.denominator;
    }
  }

  /**
   * Returns this + f.
   */
  public BigFraction add(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2) 
    return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this + b.
   */
  public BigFraction add(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    //n1/d1 + n2 = (n1 + d1*n2)/d1
    return new BigFraction(numerator.add(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this + n.
   */
  public BigFraction add(long n)
  {
    return add(BigInteger.valueOf(n));
  }

  /**
   * Returns this - f.
   */
  public BigFraction subtract(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
                           denominator.multiply(f.denominator));
  }

  /**
   * Returns this - b.
   */
  public BigFraction subtract(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.subtract(denominator.multiply(b)),
                           denominator, true);
  }

  /**
   * Returns this - n.
   */
  public BigFraction subtract(long n)
  {
    return subtract(BigInteger.valueOf(n));
  }

  /**
   * Returns this * f.
   */
  public BigFraction multiply(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
  }

  /**
   * Returns this * b.
   */
  public BigFraction multiply(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    return new BigFraction(numerator.multiply(b), denominator);
  }

  /**
   * Returns this * n.
   */
  public BigFraction multiply(long n)
  {
    return multiply(BigInteger.valueOf(n));
  }

  /**
   * Returns this / f.
   */
  public BigFraction divide(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    if(f.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
  }

  /**
   * Returns this / b.
   */
  public BigFraction divide(BigInteger b)
  {
    if(b == null)
      throw new IllegalArgumentException("Null argument");

    if(b.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(numerator, denominator.multiply(b));
  }

  /**
   * Returns this / n.
   */
  public BigFraction divide(long n)
  {
    return divide(BigInteger.valueOf(n));
  }

  /**
   * Returns this^exponent.
   */
  public BigFraction pow(int exponent)
  {
    if(exponent == 0)
      return BigFraction.ONE;
    else if (exponent == 1)
      return this;
    else if (exponent < 0)
      return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
    else
      return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
  }

  /**
   * Returns 1/this.
   */
  public BigFraction reciprocal()
  {
    if(this.numerator.equals(BigInteger.ZERO))
      throw new ArithmeticException("Divide by zero");

    return new BigFraction(denominator, numerator, true);
  }

  /**
   * Returns the complement of this fraction, which is equal to 1 - this.
   * Useful for probabilities/statistics.

   */
  public BigFraction complement()
  {
    return new BigFraction(denominator.subtract(numerator), denominator, true);
  }

  /**
   * Returns -this.
   */
  public BigFraction negate()
  {
    return new BigFraction(numerator.negate(), denominator, true);
  }

  /**
   * Returns -1, 0, or 1, representing the sign of this fraction.
   */
  public int signum()
  {
    return numerator.signum();
  }

  /**
   * Returns the absolute value of this.
   */
  public BigFraction abs()
  {
    return (signum() < 0 ? negate() : this);
  }

  /**
   * Returns a string representation of this, in the form
   * numerator/denominator.
   */
  public String toString()
  {
    return numerator.toString() + "/" + denominator.toString();
  }

  /**
   * Returns if this object is equal to another object.
   */
  public boolean equals(Object o)
  {
    if(!(o instanceof BigFraction))
      return false;

    BigFraction f = (BigFraction)o;
    return numerator.equals(f.numerator) && denominator.equals(f.denominator);
  }

  /**
   * Returns a hash code for this object.
   */
  public int hashCode()
  {
    //using the method generated by Eclipse, but streamlined a bit..
    return (31 + numerator.hashCode())*31 + denominator.hashCode();
  }

  /**
   * Returns a negative, zero, or positive number, indicating if this object
   * is less than, equal to, or greater than f, respectively.
   */
  public int compareTo(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    //easy case: this and f have different signs
    if(signum() != f.signum())
      return signum() - f.signum();

    //next easy case: this and f have the same denominator
    if(denominator.equals(f.denominator))
      return numerator.compareTo(f.numerator);

    //not an easy case, so first make the denominators equal then compare the numerators 
    return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
  }

  /**
   * Returns the smaller of this and f.
   */
  public BigFraction min(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) <= 0 ? this : f);
  }

  /**
   * Returns the maximum of this and f.
   */
  public BigFraction max(BigFraction f)
  {
    if(f == null)
      throw new IllegalArgumentException("Null argument");

    return (this.compareTo(f) >= 0 ? this : f);
  }

  /**
   * Returns a positive BigFraction, greater than or equal to zero, and less than one.
   */
  public static BigFraction random()
  {
    return new BigFraction(Math.random());
  }

  public final BigInteger getNumerator() { return numerator; }
  public final BigInteger getDenominator() { return denominator; }

  //implementation of Number class.  may cause overflow.
  public byte   byteValue()   { return (byte) Math.max(Byte.MIN_VALUE,    Math.min(Byte.MAX_VALUE,    longValue())); }
  public short  shortValue()  { return (short)Math.max(Short.MIN_VALUE,   Math.min(Short.MAX_VALUE,   longValue())); }
  public int    intValue()    { return (int)  Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
  public long   longValue()   { return Math.round(doubleValue()); }
  public float  floatValue()  { return (float)doubleValue(); }
  public double doubleValue() { return toBigDecimal(18).doubleValue(); }

  /**
   * Returns a BigDecimal representation of this fraction.  If possible, the
   * returned value will be exactly equal to the fraction.  If not, the BigDecimal
   * will have a scale large enough to hold the same number of significant figures
   * as both numerator and denominator, or the equivalent of a double-precision
   * number, whichever is more.
   */
  public BigDecimal toBigDecimal()
  {
    //Implementation note:  A fraction can be represented exactly in base-10 iff its
    //denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
    //(In other words, if there are no prime factors of the denominator except for
    //2 and 5, or if the denominator is 1).  So to determine if this denominator is
    //of this form, continually divide by 2 to get the number of 2's, and then
    //continually divide by 5 to get the number of 5's.  Afterward, if the denominator
    //is 1 then there are no other prime factors.

    //Note: number of 2's is given by the number of trailing 0 bits in the number
    int twos = denominator.getLowestSetBit();
    BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n

    final BigInteger FIVE = BigInteger.valueOf(5);
    int fives = 0;
    BigInteger[] divMod = null;

    //while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
    while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
    {
      fives++;
      tmpDen = divMod[0];
    }

    if(BigInteger.ONE.equals(tmpDen))
    {
      //This fraction will terminate in base 10, so it can be represented exactly as
      //a BigDecimal.  We would now like to make the fraction of the form
      //unscaled / 10^scale.  We know that 2^x * 5^x = 10^x, and our denominator is
      //in the form 2^twos * 5^fives.  So use max(twos, fives) as the scale, and
      //multiply the numerator and deminator by the appropriate number of 2's or 5's
      //such that the denominator is of the form 2^scale * 5^scale.  (Of course, we
      //only have to actually multiply the numerator, since all we need for the
      //BigDecimal constructor is the scale.
      BigInteger unscaled = numerator;
      int scale = Math.max(twos, fives);

      if(twos < fives)
        unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
      else if (fives < twos)
        unscaled = unscaled.multiply(FIVE.pow(twos - fives));

      return new BigDecimal(unscaled, scale);
    }

    //else: this number will repeat infinitely in base-10.  So try to figure out
    //a good number of significant digits.  Start with the number of digits required
    //to represent the numerator and denominator in base-10, which is given by
    //bitLength / log[2](10).  (bitLenth is the number of digits in base-2).
    final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
    int precision = Math.max(numerator.bitLength(), denominator.bitLength());
    precision = (int)Math.ceil(precision / LG10);

    //If the precision is less than 18 digits, use 18 digits so that the number
    //will be at least as accurate as a cast to a double.  For example, with
    //the fraction 1/3, precision will be 1, giving a result of 0.3.  This is
    //quite a bit different from what a user would expect.
    if(precision < 18)
      precision = 18;

    return toBigDecimal(precision);
  }

  /**
   * Returns a BigDecimal representation of this fraction, with a given precision.
   * @param precision  the number of significant figures to be used in the result.
   */
  public BigDecimal toBigDecimal(int precision)
  {
    return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
  }

  //--------------------------------------------------------------------------
  //  PRIVATE FUNCTIONS
  //--------------------------------------------------------------------------

  /**
   * Private constructor, used when you can be certain that the fraction is already in
   * lowest terms.  No check is done to reduce numerator/denominator.  A check is still
   * done to maintain a positive denominator.
   * 
   * @param throwaway  unused variable, only here to signal to the compiler that this
   *                   constructor should be used.
   */
  private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
  {
    if(denominator.signum() < 0)
    {
      this.numerator = numerator.negate();
      this.denominator = denominator.negate();
    }
    else
    {
      this.numerator = numerator;
      this.denominator = denominator;
    }
  }

}

如果arg为null,则抛出NullPointerException。实际上,代码无论如何都会这样做,因此您的检查(以及用IllegalArgumentException(替换)是不必要的代码膨胀
。– cletus

24
我不同意; 如果另一个用户使用此类而不看我的源代码,并且得到了NullPointerException,他会认为我的代码中有错误。但是一个IllegalArgumentException表示他违反了Javadoc暗示的合同(即使我未能明确声明它)。
Kip


1
只是一个问题,Commons Math中的分数和BigFraction有什么问题?
莫蒂默

@Mortimer:不确定,我从没看过
Kip

61

实际上,尝试使用此尺寸。它可以运行,但可能存在一些问题:

public class BigRational extends Number implements Comparable<BigRational>, Serializable {
    public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    private final static long serialVersionUID = 1099377265582986378L;

    private final BigInteger numerator, denominator;

    private BigRational(BigInteger numerator, BigInteger denominator) {
        this.numerator = numerator;
        this.denominator = denominator;
    }

    private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
        if (denominator.signum() == 0) {
            throw new IllegalArgumentException("denominator is zero");
        }
        if (numerator.signum() == 0) {
            return ZERO;
        }
        if (denominator.signum() < 0) {
            numerator = numerator.negate();
            denominator = denominator.negate();
        }
        if (checkGcd) {
            BigInteger gcd = numerator.gcd(denominator);
            if (!gcd.equals(BigInteger.ONE)) {
                numerator = numerator.divide(gcd);
                denominator = denominator.divide(gcd);
            }
        }
        return new BigRational(numerator, denominator);
    }

    public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
        return canonical(numerator, denominator, true);
    }

    public static BigRational getInstance(long numerator, long denominator) {
        return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
    }

    public static BigRational getInstance(String numerator, String denominator) {
        return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
    }

    public static BigRational valueOf(String s) {
        Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
        Matcher m = p.matcher(s);
        if (!m.matches()) {
            throw new IllegalArgumentException("Unknown format '" + s + "'");
        }

        // this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
        String whole = m.group(1);
        String decimal = m.group(2);
        String exponent = m.group(3);
        String n = whole;

        // 23.123 => 23123
        if (decimal != null) {
            n += decimal;
        }
        BigInteger numerator = new BigInteger(n);

        // exponent is an int because BigInteger.pow() takes an int argument
        // it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
        int exp = exponent == null ? 0 : Integer.valueOf(exponent);
        int decimalPlaces = decimal == null ? 0 : decimal.length();
        exp -= decimalPlaces;
        BigInteger denominator;
        if (exp < 0) {
            denominator = BigInteger.TEN.pow(-exp);
        } else {
            numerator = numerator.multiply(BigInteger.TEN.pow(exp));
            denominator = BigInteger.ONE;
        }

        // done
        return canonical(numerator, denominator, true);
    }

    // Comparable
    public int compareTo(BigRational o) {
        // note: this is a bit of cheat, relying on BigInteger.compareTo() returning
        // -1, 0 or 1.  For the more general contract of compareTo(), you'd need to do
        // more checking
        if (numerator.signum() != o.numerator.signum()) {
            return numerator.signum() - o.numerator.signum();
        } else {
            // oddly BigInteger has gcd() but no lcm()
            BigInteger i1 = numerator.multiply(o.denominator);
            BigInteger i2 = o.numerator.multiply(denominator);
            return i1.compareTo(i2); // expensive!
        }
    }

    public BigRational add(BigRational o) {
        if (o.numerator.signum() == 0) {
            return this;
        } else if (numerator.signum() == 0) {
            return o;
        } else if (denominator.equals(o.denominator)) {
            return new BigRational(numerator.add(o.numerator), denominator);
        } else {
            return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
        }
    }


    public BigRational multiply(BigRational o) {
        if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
            return ZERO;
        } else if (numerator.equals(o.denominator)) {
            return canonical(o.numerator, denominator, true);
        } else if (o.numerator.equals(denominator)) {
            return canonical(numerator, o.denominator, true);
        } else if (numerator.negate().equals(o.denominator)) {
            return canonical(o.numerator.negate(), denominator, true);
        } else if (o.numerator.negate().equals(denominator)) {
            return canonical(numerator.negate(), o.denominator, true);
        } else {
            return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
        }
    }

    public BigInteger getNumerator() { return numerator; }
    public BigInteger getDenominator() { return denominator; }
    public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
    public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
    public BigRational invert() { return canonical(denominator, numerator, false); }
    public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
    public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
    public BigRational subtract(BigRational o) { return add(o.negate()); }
    public BigRational divide(BigRational o) { return multiply(o.invert()); }
    public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
    public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }

    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
        return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    // Number
    public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
    public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
    public float floatValue() { return (float)doubleValue(); }
    public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }

    @Override
    public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        BigRational that = (BigRational) o;

        if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
        if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = numerator != null ? numerator.hashCode() : 0;
        result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
        return result;
    }

    public static void main(String args[]) {
        BigRational r1 = BigRational.valueOf("3.14e4");
        BigRational r2 = BigRational.getInstance(111, 7);
        dump("r1", r1);
        dump("r2", r2);
        dump("r1 + r2", r1.add(r2));
        dump("r1 - r2", r1.subtract(r2));
        dump("r1 * r2", r1.multiply(r2));
        dump("r1 / r2", r1.divide(r2));
        dump("r2 ^ 2", r2.pow(2));
    }

    public static void dump(String name, BigRational r) {
        System.out.printf("%s = %s%n", name, r);
        System.out.printf("%s.negate() = %s%n", name, r.negate());
        System.out.printf("%s.invert() = %s%n", name, r.invert());
        System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
        System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
        System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
        System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
        System.out.println();
    }
}

输出为:

r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000

r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143

r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143

r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857

r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714

r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180

r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980

30

我正在尝试使用Java中适当的分数。

Apache Commons Math拥有Fraction类已有相当一段时间了。大多数时候,答案是:“男孩,我希望Java 在核心库中有类似X的东西!” 可以在Apache Commons库的保护下找到。


2
我会告诉你为什么这么低,Apache Commons库不是新手友好的。首先,在该页面上没有直接下载的链接(隐藏在侧边栏菜单中),其次,没有使用说明(将jar添加到您的构建路径中),第三,无论如何都将其添加后出现classDefNotFound错误。因此,您不会得到我们只知道如何复制和粘贴的人的支持。
Noumenon

@Noumenon如何使用任何构建管理器(例如maven)并仅在POM中添加依赖项?
eugene.polschikov

1
我想为菜鸟们介绍一下“如何在您的项目中使用它”。那个建议可以去那里。就是说,我确实弄清楚了如何做到这一点,并在需要显示几分之一英寸的工厂应用程序中使用了它,而我再也没有回来给您投票。所以,谢谢,这是迟来的。
Noumenon 2015年

这是公平的反馈。这也是我迟来的感谢!:)
yawmark

这个很容易使用。
Eric Wang

24

请使其成为一成不变的类型!分数的值不会改变-例如,一半不会变成三分之一。代替setDenominator,您可以使用withDenominator返回一个具有相同分子但指定分母的分数。

使用不可变类型,生活容易得多

覆盖等号和哈希码也很明智,因此可以在地图和集合中使用。Outlaw Programmer关于算术运算符和字符串格式的观点也很好。

作为一般指南,请看一下BigInteger和BigDecimal。他们没有做相同的事情,但是它们足够相似,可以给您带来好主意。


5
“请使其成为不可变的类型!分数的值不会改变-例如,一半不会变成三分之一。” list / tuple / vector(1、2、3、4)都不会成为值(4、3、2、1),但是似乎大多数人都不会担心列表更改状态。并不是说我不同意分数的不变性,但这值得一个更好的论据。感觉就像价值,而不是一堆状态。程序员期望是正确的指导依据吗?我不确定100%,但这听起来是个好主意。
乔纳斯·科尔克(JonasKölker)2009年

2
好吧,在现实生活中,清单确实会发生变化:如何编写购物清单?您从一张空白的纸开始,然后在上面写上。中途您仍将其称为“购物清单”。话虽这么说,函数式编程确实努力使偶数列表不可变...
Jon Skeet

7

好吧,我会摆脱二传手,并使小数部分不可变。

您可能还需要加,减等方法,并可能需要某种方式来获取各种String格式的表示形式。

编辑:我可能会将字段标记为“最终”以表示我的意图,但我想这没什么大不了的。。。


2
我想知道到底有多少“使它不变”的答案:)
乔恩·斯基特

5
  • 没有算术方法(如add()和multiple()等),这是毫无意义的。
  • 您绝对应该重写equals()和hashCode()。
  • 您应该添加一种方法来标准化分数,或者自动执行。考虑一下是否要将1/2和2/4视为相同-这对equals(),hashCode()和compareTo()方法有影响。

5

我需要将它们从最小到最大排序,所以最终我也需要将它们表示为一个double

并非绝对必要。(实际上,如果您要正确处理相等性,请不要依赖double来正常工作。)如果b * d为正,则ad / bc时a / b <c / d。如果涉及负整数,则可以适当处理...

我可能会改写为:

public int compareTo(Fraction frac)
{
    // we are comparing this=a/b with frac=c/d 
    // by multiplying both sides by bd.
    // If bd is positive, then a/b < c/d <=> ad < bc.
    // If bd is negative, then a/b < c/d <=> ad > bc.
    // If bd is 0, then you've got other problems (either b=0 or d=0)
    int d = frac.getDenominator();
    long ad = (long)this.numerator * d;
    long bc = (long)this.denominator * frac.getNumerator();
    long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
    return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}

使用long此处的目的是确保将两个大ints 相乘不会造成溢出。如果可以保证分母始终为负数(如果为负数,则使分子和分母都取反),则可以不必检查b * d是否为正数并节省一些步骤。我不确定用零分母寻找的行为是什么。

不确定性能与使用双打进行比较的比较。(也就是说,如果您非常关心性能)这是我用来检查的一种测试方法。(似乎正常工作。)

public static void main(String[] args)
{
    int a = Integer.parseInt(args[0]);
    int b = Integer.parseInt(args[1]);
    int c = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    Fraction f1 = new Fraction(a,b); 
    Fraction f2 = new Fraction(c,d);
    int rel = f1.compareTo(f2);
    String relstr = "<=>";
    System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}

(ps,您可能考虑重组以实施ComparableComparator针对您的班级。)


例如,如果a = 1,b = 3,c = -2,d = -3,则情况并非如此。如果b和d为正,则当且仅当ad <bc时a / b <c / d是正确的。
路加·伍德沃德

啊,我的资格不对。(!感谢)的条件应该是,如果BD> 0
贾森小号

真正。更准确地说,如果bd> 0,则a / b <c / d <=> ac <bd为真。如果bd <0,则为真。(如果bd = 0,那么您有一个流浪汉分数。:
Paul Brinkley,2009年

关。您的意思是a / b <c / d <=> ad <bc对于bd> 0。(我第一次在我的代码注释
Jason S

4

一个非常小的改进可能是保存您正在计算的double值,以便仅在首次访问时对其进行计算。除非您经常访问此号码,否则这不会是一个大胜利,但是这样做也不是太困难。

另外一点可能是您在分母中执行的错误检查...您将0自动更改为1。不确定这对您的特定应用程序是否正确,但是通常如果有人尝试将其除以0,则表示错误非常严重。我会让它抛出一个异常(如果需要的话,它是一个特殊的异常),而不是以用户不知道的看似随意的方式更改值。

与其他一些评论相反,关于添加方法添加减法等,因为您没有提到需要它们,所以我假设您没有。而且,除非您要构建一个真正可以在许多地方或其他地方使用的库,否则请选择YAGNI(您将不需要它,因此它不应该存在。)


他具有getNumerator()和getDenominator()的事实使我相信他正在创建该类之外的新分数。如果存在,则该逻辑可能属于此处。
Outlaw程序员,

+1将分母中的0更改为1会导致灾难。
maaartinus 2014年

4

有几种方法可以改善此值或任何值类型:

  • 使您的课堂一成不变,包括使分子和分母成为最终形式
  • 自动将分数转换为规范形式,例如2/4-> 1/2
  • 实现toString()
  • 实现“公共静态分数valueOf(String s)”以将字符串转换为分数。实施类似的工厂方法从int,double等进行转换。
  • 实现加法,乘法等
  • 从整数中添加构造函数
  • 覆盖等于/ hashCode
  • 考虑根据需要将Fraction用作实现转换为BigInteger的实现的接口
  • 考虑子类号码
  • 考虑为常见的值(例如0和1)包括命名常量
  • 考虑使其可序列化
  • 测试除以零
  • 记录您的API

基本上,看看其他值类(例如Double,Integer)的API 并执行它们的工作:)


3

如果将一个小数的分子和分母乘以另一个的分母,反之亦然,则最终会得到两个具有相同分母的分数(仍然是相同的值),并且可以直接比较分子。因此,您无需计算double值:

public int compareTo(Fraction frac) {
    int t = this.numerator * frac.getDenominator();
    int f = frac.getNumerator() * this.denominator;
    if(t>f) return 1;
    if(f>t) return -1;
    return 0;
}

如果frac.getDenominator()和this.denominator具有相反的符号,则此操作失败。(请参阅我的文章。)此外,您还必须提防乘法可能溢出的事实。
杰森S

嗯,是的。但是在那种情况下,我更喜欢Kip的实现,至少可以理解。;)
Francisco Canedo

我要指出的是,在我的实现中,只有分子可以是负数。我也使用BigIntegers,所以永远不会溢出(当然会牺牲一些性能)。
Kip

2

我将如何改进该代码:

  1. 基于String Fraction(String s)的构造函数//期望“数字/数字”
  2. 副本构造函数小数(分数副本)
  3. 覆盖克隆方法
  4. 实现equals,toString和hashcode方法
  5. 实现接口java.io.Serializable,Comparable
  6. 方法“ double getDoubleValue()”
  7. 加/除/等方法...
  8. 我会将该类设为不可变的(无二传手)

一个不错的清单。可能不需要克隆/可序列化,但其他一切都是合理的。
Outlaw程序员,

@OutlawProgrammer:是的,是8还是3。可克隆的不可变是没有意义的。
maaartinus 2014年

2

您已经具有compareTo函数...我将实现Comparable接口。

也许对您将要执行的操作并不重要。



2

具体来说:是否有更好的方法来处理传递零分母的问题?将分母设置为1感觉很武断。我该怎么做呢?

我会说抛出ArithmeticException以除以零,因为这实际上是在发生什么:

public Fraction(int numerator, int denominator) {
    if(denominator == 0)
        throw new ArithmeticException("Divide by zero.");
    this.numerator = numerator;
    this.denominator = denominator;
}

而不是“除以零。”,您可能想使消息显示为“除以零:分母的分母为零”。


1

创建分数对象后,为什么要允许其他对象设置分子或分母?我认为这些应该是只读的。它使对象不可变...

另外...将分母设置为零应该引发无效的参数异常(我不知道它在Java中是什么)


或抛出新的ArithmeticException(“除以零。”)
Kip

1

蒂莫西·布德(Timothy Budd)在他的“ C ++数据结构”中对Rational类做了很好的实现。当然,语言是不同的,但是可以很好地移植到Java。

我建议更多的构造函数。默认构造函数的分子为0,分母为1。单个arg构造函数的分母为1。请考虑用户如何使用此类。

不检查零分母吗?通过合同编程可以添加它。


1

我将获得第三或第五名,或者任何使您的分数不变的建议。我还建议您让它扩展Number类。我可能会看一下Double类,因为您可能要实现许多相同的方法。

您可能还应该实现ComparableSerializable,因为可能会发生这种情况。因此,您将需要实现compareTo()。您还需要重写equals(),而我也不能过分强调hashCode()。尽管您不希望compareTo()和equals()保持一致,但这可能是少数几种情况之一,因为彼此可缩减的分数不一定相等。


1

我喜欢的清理习惯是只有一次回报。

 public int compareTo(Fraction frac) {
        int result = 0
        double t = this.doubleValue();
        double f = frac.doubleValue();
        if(t>f) 
           result = 1;
        else if(f>t) 
           result -1;
        return result;
    }


1

我清理了cletus的回答

  • 为所有方法添加了Javadoc。
  • 添加了对方法前提条件的检查。
  • 使用替换了自定义解析valueOf(String),该解析BigInteger(String)既灵活又更快。
import com.google.common.base.Splitter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.List;
import java.util.Objects;
import org.bitbucket.cowwoc.preconditions.Preconditions;

/**
 * A rational fraction, represented by {@code numerator / denominator}.
 * <p>
 * This implementation is based on <a
 * href="https://stackoverflow.com/a/474577/14731">https://stackoverflow.com/a/474577/14731</a>
 * <p>
 * @author Gili Tzabari
 */
public final class BigRational extends Number implements Comparable<BigRational>
{
    private static final long serialVersionUID = 0L;
    public static final BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
    public static final BigRational ONE = new BigRational(BigInteger.ONE, BigInteger.ONE);

    /**
     * Ensures the fraction the denominator is positive and optionally divides the numerator and
     * denominator by the greatest common factor.
     * <p>
     * @param numerator   a numerator
     * @param denominator a denominator
     * @param checkGcd    true if the numerator and denominator should be divided by the greatest
     *                    common factor
     * @return the canonical representation of the rational fraction
     */
    private static BigRational canonical(BigInteger numerator, BigInteger denominator,
        boolean checkGcd)
    {
        assert (numerator != null);
        assert (denominator != null);
        if (denominator.signum() == 0)
            throw new IllegalArgumentException("denominator is zero");
        if (numerator.signum() == 0)
            return ZERO;
        BigInteger newNumerator = numerator;
        BigInteger newDenominator = denominator;
        if (newDenominator.signum() < 0)
        {
            newNumerator = newNumerator.negate();
            newDenominator = newDenominator.negate();
        }
        if (checkGcd)
        {
            BigInteger gcd = newNumerator.gcd(newDenominator);
            if (!gcd.equals(BigInteger.ONE))
            {
                newNumerator = newNumerator.divide(gcd);
                newDenominator = newDenominator.divide(gcd);
            }
        }
        return new BigRational(newNumerator, newDenominator);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException if numerator or denominator are null
     */
    public static BigRational valueOf(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        return canonical(numerator, denominator, true);
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     */
    public static BigRational valueOf(long numerator, long denominator)
    {
        BigInteger bigNumerator = BigInteger.valueOf(numerator);
        BigInteger bigDenominator = BigInteger.valueOf(denominator);
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value the parameter value
     * @param name  the parameter name
     * @return the BigInteger representation of the parameter
     * @throws NumberFormatException if value is not a valid representation of BigInteger
     */
    private static BigInteger requireBigInteger(String value, String name)
        throws NumberFormatException
    {
        try
        {
            return new BigInteger(value);
        }
        catch (NumberFormatException e)
        {
            throw (NumberFormatException) new NumberFormatException("Invalid " + name + ": " + value).
                initCause(e);
        }
    }

    /**
     * @param numerator   a numerator
     * @param denominator a denominator
     * @return a BigRational having value {@code numerator / denominator}
     * @throws NullPointerException     if numerator or denominator are null
     * @throws IllegalArgumentException if numerator or denominator are empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String numerator, String denominator)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull().isNotEmpty();
        Preconditions.requireThat(denominator, "denominator").isNotNull().isNotEmpty();
        BigInteger bigNumerator = requireBigInteger(numerator, "numerator");
        BigInteger bigDenominator = requireBigInteger(denominator, "denominator");
        return canonical(bigNumerator, bigDenominator, true);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5" or "3/4")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    public static BigRational valueOf(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        List<String> fractionParts = Splitter.on('/').splitToList(value);
        if (fractionParts.size() == 1)
            return valueOfRational(value);
        if (fractionParts.size() == 2)
            return BigRational.valueOf(fractionParts.get(0), fractionParts.get(1));
        throw new IllegalArgumentException("Too many slashes: " + value);
    }

    /**
     * @param value a string representation of a rational fraction (e.g. "12.34e5")
     * @return a BigRational representation of the String
     * @throws NullPointerException     if value is null
     * @throws IllegalArgumentException if value is empty
     * @throws NumberFormatException    if numerator or denominator are not a valid representation of
     *                                  BigDecimal
     */
    private static BigRational valueOfRational(String value)
        throws NullPointerException, IllegalArgumentException, NumberFormatException
    {
        Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
        BigDecimal bigDecimal = new BigDecimal(value);
        int scale = bigDecimal.scale();
        BigInteger numerator = bigDecimal.unscaledValue();
        BigInteger denominator;
        if (scale > 0)
            denominator = BigInteger.TEN.pow(scale);
        else
        {
            numerator = numerator.multiply(BigInteger.TEN.pow(-scale));
            denominator = BigInteger.ONE;
        }

        return canonical(numerator, denominator, true);
    }

    private final BigInteger numerator;
    private final BigInteger denominator;

    /**
     * @param numerator   the numerator
     * @param denominator the denominator
     * @throws NullPointerException if numerator or denominator are null
     */
    private BigRational(BigInteger numerator, BigInteger denominator)
    {
        Preconditions.requireThat(numerator, "numerator").isNotNull();
        Preconditions.requireThat(denominator, "denominator").isNotNull();
        this.numerator = numerator;
        this.denominator = denominator;
    }

    /**
     * @return the numerator
     */
    public BigInteger getNumerator()
    {
        return numerator;
    }

    /**
     * @return the denominator
     */
    public BigInteger getDenominator()
    {
        return denominator;
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public int compareTo(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();

        // canonical() ensures denominator is positive
        if (numerator.signum() != other.numerator.signum())
            return numerator.signum() - other.numerator.signum();

        // Set the denominator to a common multiple before comparing the numerators
        BigInteger first = numerator.multiply(other.denominator);
        BigInteger second = other.numerator.multiply(denominator);
        return first.compareTo(second);
    }

    /**
     * @param other another rational fraction
     * @return the result of adding this object to {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational add(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (other.numerator.signum() == 0)
            return this;
        if (numerator.signum() == 0)
            return other;
        if (denominator.equals(other.denominator))
            return new BigRational(numerator.add(other.numerator), denominator);
        return canonical(numerator.multiply(other.denominator).
            add(other.numerator.multiply(denominator)),
            denominator.multiply(other.denominator), true);
    }

    /**
     * @param other another rational fraction
     * @return the result of subtracting {@code other} from this object
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational subtract(BigRational other)
    {
        return add(other.negate());
    }

    /**
     * @param other another rational fraction
     * @return the result of multiplying this object by {@code other}
     * @throws NullPointerException if other is null
     */
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public BigRational multiply(BigRational other)
    {
        Preconditions.requireThat(other, "other").isNotNull();
        if (numerator.signum() == 0 || other.numerator.signum() == 0)
            return ZERO;
        if (numerator.equals(other.denominator))
            return canonical(other.numerator, denominator, true);
        if (other.numerator.equals(denominator))
            return canonical(numerator, other.denominator, true);
        if (numerator.negate().equals(other.denominator))
            return canonical(other.numerator.negate(), denominator, true);
        if (other.numerator.negate().equals(denominator))
            return canonical(numerator.negate(), other.denominator, true);
        return canonical(numerator.multiply(other.numerator), denominator.multiply(other.denominator),
            true);
    }

    /**
     * @param other another rational fraction
     * @return the result of dividing this object by {@code other}
     * @throws NullPointerException if other is null
     */
    public BigRational divide(BigRational other)
    {
        return multiply(other.invert());
    }

    /**
     * @return true if the object is a whole number
     */
    public boolean isInteger()
    {
        return numerator.signum() == 0 || denominator.equals(BigInteger.ONE);
    }

    /**
     * Returns a BigRational whose value is (-this).
     * <p>
     * @return -this
     */
    public BigRational negate()
    {
        return new BigRational(numerator.negate(), denominator);
    }

    /**
     * @return a rational fraction with the numerator and denominator swapped
     */
    public BigRational invert()
    {
        return canonical(denominator, numerator, false);
    }

    /**
     * @return the absolute value of this {@code BigRational}
     */
    public BigRational abs()
    {
        if (numerator.signum() < 0)
            return negate();
        return this;
    }

    /**
     * @param exponent exponent to which both numerator and denominator is to be raised.
     * @return a BigRational whose value is (this<sup>exponent</sup>).
     */
    public BigRational pow(int exponent)
    {
        return canonical(numerator.pow(exponent), denominator.pow(exponent), true);
    }

    /**
     * @param other another rational fraction
     * @return the minimum of this object and the other fraction
     */
    public BigRational min(BigRational other)
    {
        if (compareTo(other) <= 0)
            return this;
        return other;
    }

    /**
     * @param other another rational fraction
     * @return the maximum of this object and the other fraction
     */
    public BigRational max(BigRational other)
    {
        if (compareTo(other) >= 0)
            return this;
        return other;
    }

    /**
     * @param scale        scale of the BigDecimal quotient to be returned
     * @param roundingMode the rounding mode to apply
     * @return a BigDecimal representation of this object
     * @throws NullPointerException if roundingMode is null
     */
    public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode)
    {
        Preconditions.requireThat(roundingMode, "roundingMode").isNotNull();
        if (isInteger())
            return new BigDecimal(numerator);
        return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
    }

    @Override
    public int intValue()
    {
        return (int) longValue();
    }

    @Override
    public long longValue()
    {
        if (isInteger())
            return numerator.longValue();
        return numerator.divide(denominator).longValue();
    }

    @Override
    public float floatValue()
    {
        return (float) doubleValue();
    }

    @Override
    public double doubleValue()
    {
        if (isInteger())
            return numerator.doubleValue();
        return numerator.doubleValue() / denominator.doubleValue();
    }

    @Override
    @SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
    public boolean equals(Object o)
    {
        if (this == o)
            return true;
        if (!(o instanceof BigRational))
            return false;
        BigRational other = (BigRational) o;

        return numerator.equals(other.denominator) && Objects.equals(denominator, other.denominator);
    }

    @Override
    public int hashCode()
    {
        return Objects.hash(numerator, denominator);
    }

    /**
     * Returns the String representation: {@code numerator / denominator}.
     */
    @Override
    public String toString()
    {
        if (isInteger())
            return String.format("%,d", numerator);
        return String.format("%,d / %,d", numerator, denominator);
    }
}

0

初步说明:

永远不要这样写:

if ( condition ) statement;

这样好多了

if ( condition ) { statement };

只要创造一个良好的习惯。

通过按照建议使类不可变,您还可以利用double来执行equals和hashCode和compareTo操作

这是我的快速脏版本:

public final class Fraction implements Comparable {

    private final int numerator;
    private final int denominator;
    private final Double internal;

    public static Fraction createFraction( int numerator, int denominator ) { 
        return new Fraction( numerator, denominator );
    }

    private Fraction(int numerator, int denominator) {
        this.numerator   = numerator;
        this.denominator = denominator;
        this.internal = ((double) numerator)/((double) denominator);
    }


    public int getNumerator() {
        return this.numerator;
    }

    public int getDenominator() {
        return this.denominator;
    }


    private double doubleValue() {
        return internal;
    }

    public int compareTo( Object o ) {
        if ( o instanceof Fraction ) { 
            return internal.compareTo( ((Fraction)o).internal );
        }
        return 1;
    }

    public boolean equals( Object o ) {
          if ( o instanceof Fraction ) {  
             return this.internal.equals( ((Fraction)o).internal );
          } 
          return false;
    }

    public int hashCode() { 
        return internal.hashCode();
    }



    public String toString() { 
        return String.format("%d/%d", numerator, denominator );
    }

    public static void main( String [] args ) { 
        System.out.println( Fraction.createFraction( 1 , 2 ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).hashCode() ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).compareTo( Fraction.createFraction(2,4) ) ) ;
        System.out.println( Fraction.createFraction( 1 , 2 ).equals( Fraction.createFraction(4,8) ) ) ;
        System.out.println( Fraction.createFraction( 3 , 9 ).equals( Fraction.createFraction(1,3) ) ) ;
    }       

}

关于静态工厂方法,如果将Fraction子类化以处理更复杂的事情,或者决定将池用于最常用的对象,则在以后可能有用。

可能并非如此,我只是想指出这一点。:)

请参阅有效Java



0

即使您具有compareTo()方法,如果您想使用Collections.sort()之类的实用程序,那么也应该实现Comparable。

public class Fraction extends Number implements Comparable<Fraction> {
 ...
}

另外,为了显示漂亮,我建议重写toString()

public String toString() {
    return this.getNumerator() + "/" + this.getDenominator();
}

最后,我将使该类公开,以便您可以从其他包中使用它。


0

定义分数时,使用Eucledian算法简化的此功能非常有用

 public Fraction simplify(){


     int safe;
     int h= Math.max(numerator, denominator);
     int h2 = Math.min(denominator, numerator);

     if (h == 0){

         return new Fraction(1,1);
     }

     while (h>h2 && h2>0){

          h = h - h2;
          if (h>h2){

              safe = h;
              h = h2;
              h2 = safe;

          }  

     }

  return new Fraction(numerator/h,denominator/h);

 }

0

对于行业级的小数/有理数实现,我将实现它,以便它可以表示NaN,正无穷大,负无穷大以及可选的负零,其操作语义与浮点算术的IEEE 754标准状态完全相同(这也简化了到/从浮点值的转换)。另外,由于与零,一和上面的特殊值的比较仅需要简单,但将分子和分母与0和1进行组合比较-我将添加几个isXXX和compareToXXX方法以便于使用(例如eq0()将在幕后使用分子== 0 &&分母!= 0,而不是让客户端与零值实例进行比较)。一些静态预定义的值(零,一,二,十,一_十,南等)也很有用,因为它们在多个位置显示为常数。这是恕我直言的最好方法。


0

类分数:

     public class Fraction {
        private int num;            // numerator 
        private int denom;          // denominator 
        // default constructor
        public Fraction() {}
        // constructor
        public Fraction( int a, int b ) {
            num = a;
            if ( b == 0 )
                throw new ZeroDenomException();
            else
                denom = b;
        }
        // return string representation of ComplexNumber
        @Override
        public String toString() {
            return "( " + num + " / " + denom + " )";
        }
        // the addition operation
        public Fraction add(Fraction x){
            return new Fraction(
                    x.num * denom + x.denom * num, x.denom * denom );
        }
        // the multiplication operation
        public Fraction multiply(Fraction x) {
            return new Fraction(x.num * num, x.denom * denom);
        } 
}

主程序:

    static void main(String[] args){
    Scanner input = new Scanner(System.in);
    System.out.println("Enter numerator and denominator of first fraction");
    int num1 =input.nextInt();
    int denom1 =input.nextInt();
    Fraction x = new Fraction(num1, denom1);
    System.out.println("Enter numerator and denominator of second fraction");
    int num2 =input.nextInt();
    int denom2 =input.nextInt();
    Fraction y = new Fraction(num2, denom2);
    Fraction result = new Fraction();
    System.out.println("Enter required operation: A (Add), M (Multiply)");
    char op = input.next().charAt(0);
    if(op == 'A') {
        result = x.add(y);
        System.out.println(x + " + " + y + " = " + result);
    }
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.