我想确定是否从托管代码应用程序(C#)将本机程序集编译为x64或x86 。
我认为它必须在PE标头中,因为操作系统加载程序需要知道此信息,但我找不到它。当然,我更喜欢在托管代码中执行此操作,但是如果需要,我可以使用本机C ++。
我想确定是否从托管代码应用程序(C#)将本机程序集编译为x64或x86 。
我认为它必须在PE标头中,因为操作系统加载程序需要知道此信息,但我找不到它。当然,我更喜欢在托管代码中执行此操作,但是如果需要,我可以使用本机C ++。
Answers:
您也可以使用DUMPBIN。使用/headers
或/all
标志及其列出的第一个文件头。
dumpbin /headers cv210.dll
Microsoft (R) COFF/PE Dumper Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
Dump of file cv210.dll
PE signature found
File Type: DLL
FILE HEADER VALUES
8664 machine (x64)
6 number of sections
4BBAB813 time date stamp Tue Apr 06 12:26:59 2010
0 file pointer to symbol table
0 number of symbols
F0 size of optional header
2022 characteristics
Executable
Application can handle large (>2GB) addresses
DLL
Microsoft (R) COFF/PE Dumper Version 10.00.30319.01
Copyright (C) Microsoft Corporation. All rights reserved.
Dump of file acrdlg.dll
PE signature found
File Type: DLL
FILE HEADER VALUES
14C machine (x86)
5 number of sections
467AFDD2 time date stamp Fri Jun 22 06:38:10 2007
0 file pointer to symbol table
0 number of symbols
E0 size of optional header
2306 characteristics
Executable
Line numbers stripped
32 bit word machine
Debug information stripped
DLL
“查找”可以使生活稍微轻松一些:
dumpbin /headers cv210.dll |find "machine"
8664 machine (x64)
mspdb100.dll
:(
mspdb100.dll
到所在的文件夹中解决了该问题dumpbin.exe
。DUMPBIN
可以在那之后运行。对我来说,EXE是在<Visual Studio Install folder>\VC\bin
DLL处<Visual Studio Install folder>\Common7\IDE
。
使用CorFlags有一个简单的方法。打开Visual Studio命令提示符,然后键入“ corflags [您的程序集]”。您将获得如下内容:
c:\ Program Files(x86)\ Microsoft Visual Studio 9.0 \ VC>更正了“ C:\ Windows \ Microsoft.NET \ Framework \ v2.0.50727 \ System.Data.dll”
Microsoft(R).NET Framework CorFlags转换工具。版本3.5.21022.8版权所有(c)Microsoft Corporation。版权所有。
版本:v2.0.50727 CLR标头:2.5 PE:PE32 CorFlags:24 ILONLY:0 32BIT:0 Signed:1
您正在专门研究PE和32BIT。
任何CPU:
PE:PE32
32BIT:0
x86:
PE:PE32
32BIT:1
x64:
PE:PE32 +
32BIT:0
(尽管Windows可执行映像(DLL / EXE文件)中的标头没有可选的Magic
字段)的字段IMAGE_OPTIONAL_HEADER
将告诉您PE的体系结构。
这是一个从文件中获取体系结构的示例。
public static ushort GetImageArchitecture(string filepath) {
using (var stream = new System.IO.FileStream(filepath, System.IO.FileMode.Open, System.IO.FileAccess.Read))
using (var reader = new System.IO.BinaryReader(stream)) {
//check the MZ signature to ensure it's a valid Portable Executable image
if (reader.ReadUInt16() != 23117)
throw new BadImageFormatException("Not a valid Portable Executable image", filepath);
// seek to, and read, e_lfanew then advance the stream to there (start of NT header)
stream.Seek(0x3A, System.IO.SeekOrigin.Current);
stream.Seek(reader.ReadUInt32(), System.IO.SeekOrigin.Begin);
// Ensure the NT header is valid by checking the "PE\0\0" signature
if (reader.ReadUInt32() != 17744)
throw new BadImageFormatException("Not a valid Portable Executable image", filepath);
// seek past the file header, then read the magic number from the optional header
stream.Seek(20, System.IO.SeekOrigin.Current);
return reader.ReadUInt16();
}
}
目前仅有的两个体系结构常量是:
0x10b - PE32
0x20b - PE32+
干杯
更新
自从我发布此答案以来已经有一段时间了,但是我仍然看到它不时得到一些支持,因此我认为值得更新。我编写了一种获取Portable Executable
图像架构的方法,该方法还检查是否将其编译为AnyCPU
。不幸的是,答案是C ++,但是如果您有几分钟的时间来查找中的结构,那么移植到C#并不难WinNT.h
。如果人们有兴趣,我会用C#编写一个端口,但是除非人们真正想要它,否则我不会花太多时间强调它。
#include <Windows.h>
#define MKPTR(p1,p2) ((DWORD_PTR)(p1) + (DWORD_PTR)(p2))
typedef enum _pe_architecture {
PE_ARCHITECTURE_UNKNOWN = 0x0000,
PE_ARCHITECTURE_ANYCPU = 0x0001,
PE_ARCHITECTURE_X86 = 0x010B,
PE_ARCHITECTURE_x64 = 0x020B
} PE_ARCHITECTURE;
LPVOID GetOffsetFromRva(IMAGE_DOS_HEADER *pDos, IMAGE_NT_HEADERS *pNt, DWORD rva) {
IMAGE_SECTION_HEADER *pSecHd = IMAGE_FIRST_SECTION(pNt);
for(unsigned long i = 0; i < pNt->FileHeader.NumberOfSections; ++i, ++pSecHd) {
// Lookup which section contains this RVA so we can translate the VA to a file offset
if (rva >= pSecHd->VirtualAddress && rva < (pSecHd->VirtualAddress + pSecHd->Misc.VirtualSize)) {
DWORD delta = pSecHd->VirtualAddress - pSecHd->PointerToRawData;
return (LPVOID)MKPTR(pDos, rva - delta);
}
}
return NULL;
}
PE_ARCHITECTURE GetImageArchitecture(void *pImageBase) {
// Parse and validate the DOS header
IMAGE_DOS_HEADER *pDosHd = (IMAGE_DOS_HEADER*)pImageBase;
if (IsBadReadPtr(pDosHd, sizeof(pDosHd->e_magic)) || pDosHd->e_magic != IMAGE_DOS_SIGNATURE)
return PE_ARCHITECTURE_UNKNOWN;
// Parse and validate the NT header
IMAGE_NT_HEADERS *pNtHd = (IMAGE_NT_HEADERS*)MKPTR(pDosHd, pDosHd->e_lfanew);
if (IsBadReadPtr(pNtHd, sizeof(pNtHd->Signature)) || pNtHd->Signature != IMAGE_NT_SIGNATURE)
return PE_ARCHITECTURE_UNKNOWN;
// First, naive, check based on the 'Magic' number in the Optional Header.
PE_ARCHITECTURE architecture = (PE_ARCHITECTURE)pNtHd->OptionalHeader.Magic;
// If the architecture is x86, there is still a possibility that the image is 'AnyCPU'
if (architecture == PE_ARCHITECTURE_X86) {
IMAGE_DATA_DIRECTORY comDirectory = pNtHd->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR];
if (comDirectory.Size) {
IMAGE_COR20_HEADER *pClrHd = (IMAGE_COR20_HEADER*)GetOffsetFromRva(pDosHd, pNtHd, comDirectory.VirtualAddress);
// Check to see if the CLR header contains the 32BITONLY flag, if not then the image is actually AnyCpu
if ((pClrHd->Flags & COMIMAGE_FLAGS_32BITREQUIRED) == 0)
architecture = PE_ARCHITECTURE_ANYCPU;
}
}
return architecture;
}
该函数接受指向内存中PE图像的指针(因此,您可以选择如何获取毒药;进行内存映射或将整个内容读取到内存中……)。
32BIT
在PE中从何处获得其标志,我不知道该怎么办。
对于非托管DLL文件,您需要首先检查它是否为16位DLL文件(希望不是)。然后检查该IMAGE\_FILE_HEADER.Machine
字段。
其他人已经花时间解决了这个问题,因此我在这里重复一遍:
要区分32位和64位PE文件,应检查IMAGE_FILE_HEADER.Machine字段。基于下面的Microsoft PE和COFF规范,我列出了该字段的所有可能值:http : //download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/ pecoff_v8.doc
IMAGE_FILE_MACHINE_UNKNOWN 0x0假定此字段的内容适用于任何机器类型
IMAGE_FILE_MACHINE_AM33 0x1d3松下AM33
IMAGE_FILE_MACHINE_AMD64 0x8664 x64
IMAGE_FILE_MACHINE_ARM 0x1c0 ARM小端
IMAGE_FILE_MACHINE_EBC 0xebc EFI字节码
IMAGE_FILE_MACHINE_I386 0x14c Intel 386或更高版本的处理器以及兼容的处理器
IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium处理器家族
IMAGE_FILE_MACHINE_M32R 0x9041三菱M32R小端
IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16
IMAGE_FILE_MACHINE_MIPSFPU 0x366具有FPU的MIPS
IMAGE_FILE_MACHINE_MIPSFPU16 0x466具有FPU的MIPS16
IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC小端
IMAGE_FILE_MACHINE_POWERPCFP 0x1f1具有浮点支持的Power PC
IMAGE_FILE_MACHINE_R4000 0x166 MIPS小端
IMAGE_FILE_MACHINE_SH3 0x1a2日立SH3
IMAGE_FILE_MACHINE_SH3DSP 0x1a3日立SH3 DSP
IMAGE_FILE_MACHINE_SH4 0x1a6日立SH4
IMAGE_FILE_MACHINE_SH5 0x1a8日立SH5
IMAGE_FILE_MACHINE_THUMB 0x1c2拇指
IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS小端WCE v2
是的,您可以检查IMAGE_FILE_MACHINE_AMD64 | IMAGE_FILE_MACHINE_IA64 64位和IMAGE_FILE_MACHINE_I386 32位。
64位二进制文件以PE32 +格式存储。尝试阅读http://www.masm32.com/board/index.php?action=dlattach;topic=6687.0;id=3486
我在Powershell脚本的第一个答案中重写了c ++解决方案。脚本可以确定以下类型的.exe和.dll文件:
#Description C# compiler switch PE type machine corflags
#MSIL /platform:anycpu (default) PE32 x86 ILONLY
#MSIL 32 bit pref /platform:anycpu32bitpreferred PE32 x86 ILONLY | 32BITREQUIRED | 32BITPREFERRED
#x86 managed /platform:x86 PE32 x86 ILONLY | 32BITREQUIRED
#x86 mixed n/a PE32 x86 32BITREQUIRED
#x64 managed /platform:x64 PE32+ x64 ILONLY
#x64 mixed n/a PE32+ x64
#ARM managed /platform:arm PE32 ARM ILONLY
#ARM mixed n/a PE32 ARM
与corflags.exe和通过C#中的Assembly.Load加载程序集相比,此解决方案具有一些优势-您将永远不会获得BadImageFormatException或有关无效标头的消息。
function GetActualAddressFromRVA($st, $sec, $numOfSec, $dwRVA)
{
[System.UInt32] $dwRet = 0;
for($j = 0; $j -lt $numOfSec; $j++)
{
$nextSectionOffset = $sec + 40*$j;
$VirtualSizeOffset = 8;
$VirtualAddressOffset = 12;
$SizeOfRawDataOffset = 16;
$PointerToRawDataOffset = 20;
$Null = @(
$curr_offset = $st.BaseStream.Seek($nextSectionOffset + $VirtualSizeOffset, [System.IO.SeekOrigin]::Begin);
[System.UInt32] $VirtualSize = $b.ReadUInt32();
[System.UInt32] $VirtualAddress = $b.ReadUInt32();
[System.UInt32] $SizeOfRawData = $b.ReadUInt32();
[System.UInt32] $PointerToRawData = $b.ReadUInt32();
if ($dwRVA -ge $VirtualAddress -and $dwRVA -lt ($VirtualAddress + $VirtualSize)) {
$delta = $VirtualAddress - $PointerToRawData;
$dwRet = $dwRVA - $delta;
return $dwRet;
}
);
}
return $dwRet;
}
function Get-Bitness2([System.String]$path, $showLog = $false)
{
$Obj = @{};
$Obj.Result = '';
$Obj.Error = $false;
$Obj.Log = @(Split-Path -Path $path -Leaf -Resolve);
$b = new-object System.IO.BinaryReader([System.IO.File]::Open($path,[System.IO.FileMode]::Open,[System.IO.FileAccess]::Read, [System.IO.FileShare]::Read));
$curr_offset = $b.BaseStream.Seek(0x3c, [System.IO.SeekOrigin]::Begin)
[System.Int32] $peOffset = $b.ReadInt32();
$Obj.Log += 'peOffset ' + "{0:X0}" -f $peOffset;
$curr_offset = $b.BaseStream.Seek($peOffset, [System.IO.SeekOrigin]::Begin);
[System.UInt32] $peHead = $b.ReadUInt32();
if ($peHead -ne 0x00004550) {
$Obj.Error = $true;
$Obj.Result = 'Bad Image Format';
$Obj.Log += 'cannot determine file type (not x64/x86/ARM) - exit with error';
};
if ($Obj.Error)
{
$b.Close();
Write-Host ($Obj.Log | Format-List | Out-String);
return $false;
};
[System.UInt16] $machineType = $b.ReadUInt16();
$Obj.Log += 'machineType ' + "{0:X0}" -f $machineType;
[System.UInt16] $numOfSections = $b.ReadUInt16();
$Obj.Log += 'numOfSections ' + "{0:X0}" -f $numOfSections;
if (($machineType -eq 0x8664) -or ($machineType -eq 0x200)) { $Obj.Log += 'machineType: x64'; }
elseif ($machineType -eq 0x14c) { $Obj.Log += 'machineType: x86'; }
elseif ($machineType -eq 0x1c0) { $Obj.Log += 'machineType: ARM'; }
else{
$Obj.Error = $true;
$Obj.Log += 'cannot determine file type (not x64/x86/ARM) - exit with error';
};
if ($Obj.Error) {
$b.Close();
Write-Output ($Obj.Log | Format-List | Out-String);
return $false;
};
$curr_offset = $b.BaseStream.Seek($peOffset+20, [System.IO.SeekOrigin]::Begin);
[System.UInt16] $sizeOfPeHeader = $b.ReadUInt16();
$coffOffset = $peOffset + 24;#PE header size is 24 bytes
$Obj.Log += 'coffOffset ' + "{0:X0}" -f $coffOffset;
$curr_offset = $b.BaseStream.Seek($coffOffset, [System.IO.SeekOrigin]::Begin);#+24 byte magic number
[System.UInt16] $pe32 = $b.ReadUInt16();
$clr20headerOffset = 0;
$flag32bit = $false;
$Obj.Log += 'pe32 magic number: ' + "{0:X0}" -f $pe32;
$Obj.Log += 'size of optional header ' + ("{0:D0}" -f $sizeOfPeHeader) + " bytes";
#COMIMAGE_FLAGS_ILONLY =0x00000001,
#COMIMAGE_FLAGS_32BITREQUIRED =0x00000002,
#COMIMAGE_FLAGS_IL_LIBRARY =0x00000004,
#COMIMAGE_FLAGS_STRONGNAMESIGNED =0x00000008,
#COMIMAGE_FLAGS_NATIVE_ENTRYPOINT =0x00000010,
#COMIMAGE_FLAGS_TRACKDEBUGDATA =0x00010000,
#COMIMAGE_FLAGS_32BITPREFERRED =0x00020000,
$COMIMAGE_FLAGS_ILONLY = 0x00000001;
$COMIMAGE_FLAGS_32BITREQUIRED = 0x00000002;
$COMIMAGE_FLAGS_32BITPREFERRED = 0x00020000;
$offset = 96;
if ($pe32 -eq 0x20b) {
$offset = 112;#size of COFF header is bigger for pe32+
}
$clr20dirHeaderOffset = $coffOffset + $offset + 14*8;#clr directory header offset + start of section number 15 (each section is 8 byte long);
$Obj.Log += 'clr20dirHeaderOffset ' + "{0:X0}" -f $clr20dirHeaderOffset;
$curr_offset = $b.BaseStream.Seek($clr20dirHeaderOffset, [System.IO.SeekOrigin]::Begin);
[System.UInt32] $clr20VirtualAddress = $b.ReadUInt32();
[System.UInt32] $clr20Size = $b.ReadUInt32();
$Obj.Log += 'clr20VirtualAddress ' + "{0:X0}" -f $clr20VirtualAddress;
$Obj.Log += 'clr20SectionSize ' + ("{0:D0}" -f $clr20Size) + " bytes";
if ($clr20Size -eq 0) {
if ($machineType -eq 0x1c0) { $Obj.Result = 'ARM native'; }
elseif ($pe32 -eq 0x10b) { $Obj.Result = '32-bit native'; }
elseif($pe32 -eq 0x20b) { $Obj.Result = '64-bit native'; }
$b.Close();
if ($Obj.Result -eq '') {
$Obj.Error = $true;
$Obj.Log += 'Unknown type of file';
}
else {
if ($showLog) { Write-Output ($Obj.Log | Format-List | Out-String); };
return $Obj.Result;
}
};
if ($Obj.Error) {
$b.Close();
Write-Host ($Obj.Log | Format-List | Out-String);
return $false;
};
[System.UInt32]$sectionsOffset = $coffOffset + $sizeOfPeHeader;
$Obj.Log += 'sectionsOffset ' + "{0:X0}" -f $sectionsOffset;
$realOffset = GetActualAddressFromRVA $b $sectionsOffset $numOfSections $clr20VirtualAddress;
$Obj.Log += 'real IMAGE_COR20_HEADER offset ' + "{0:X0}" -f $realOffset;
if ($realOffset -eq 0) {
$Obj.Error = $true;
$Obj.Log += 'cannot find COR20 header - exit with error';
$b.Close();
return $false;
};
if ($Obj.Error) {
$b.Close();
Write-Host ($Obj.Log | Format-List | Out-String);
return $false;
};
$curr_offset = $b.BaseStream.Seek($realOffset + 4, [System.IO.SeekOrigin]::Begin);
[System.UInt16] $majorVer = $b.ReadUInt16();
[System.UInt16] $minorVer = $b.ReadUInt16();
$Obj.Log += 'IMAGE_COR20_HEADER version ' + ("{0:D0}" -f $majorVer) + "." + ("{0:D0}" -f $minorVer);
$flagsOffset = 16;#+16 bytes - flags field
$curr_offset = $b.BaseStream.Seek($realOffset + $flagsOffset, [System.IO.SeekOrigin]::Begin);
[System.UInt32] $flag32bit = $b.ReadUInt32();
$Obj.Log += 'CorFlags: ' + ("{0:X0}" -f $flag32bit);
#Description C# compiler switch PE type machine corflags
#MSIL /platform:anycpu (default) PE32 x86 ILONLY
#MSIL 32 bit pref /platform:anycpu32bitpreferred PE32 x86 ILONLY | 32BITREQUIRED | 32BITPREFERRED
#x86 managed /platform:x86 PE32 x86 ILONLY | 32BITREQUIRED
#x86 mixed n/a PE32 x86 32BITREQUIRED
#x64 managed /platform:x64 PE32+ x64 ILONLY
#x64 mixed n/a PE32+ x64
#ARM managed /platform:arm PE32 ARM ILONLY
#ARM mixed n/a PE32 ARM
$isILOnly = ($flag32bit -band $COMIMAGE_FLAGS_ILONLY) -eq $COMIMAGE_FLAGS_ILONLY;
$Obj.Log += 'ILONLY: ' + $isILOnly;
if ($machineType -eq 0x1c0) {#if ARM
if ($isILOnly) { $Obj.Result = 'ARM managed'; }
else { $Obj.Result = 'ARM mixed'; }
}
elseif ($pe32 -eq 0x10b) {#pe32
$is32bitRequired = ($flag32bit -band $COMIMAGE_FLAGS_32BITREQUIRED) -eq $COMIMAGE_FLAGS_32BITREQUIRED;
$is32bitPreffered = ($flag32bit -band $COMIMAGE_FLAGS_32BITPREFERRED) -eq $COMIMAGE_FLAGS_32BITPREFERRED;
$Obj.Log += '32BIT: ' + $is32bitRequired;
$Obj.Log += '32BIT PREFFERED: ' + $is32bitPreffered
if ($is32bitRequired -and $isILOnly -and $is32bitPreffered) { $Obj.Result = 'AnyCpu 32bit-preffered'; }
elseif ($is32bitRequired -and $isILOnly -and !$is32bitPreffered){ $Obj.Result = 'x86 managed'; }
elseif (!$is32bitRequired -and !$isILOnly -and $is32bitPreffered) { $Obj.Result = 'x86 mixed'; }
elseif ($isILOnly) { $Obj.Result = 'AnyCpu'; }
}
elseif ($pe32 -eq 0x20b) {#pe32+
if ($isILOnly) { $Obj.Result = 'x64 managed'; }
else { $Obj.Result = 'x64 mixed'; }
}
$b.Close();
if ($showLog) { Write-Host ($Obj.Log | Format-List | Out-String); }
if ($Obj.Result -eq ''){ return 'Unknown type of file';};
$flags = '';
if ($isILOnly) {$flags += 'ILONLY';}
if ($is32bitRequired) {
if ($flags -ne '') {$flags += ' | ';}
$flags += '32BITREQUIRED';
}
if ($is32bitPreffered) {
if ($flags -ne '') {$flags += ' | ';}
$flags += '32BITPREFERRED';
}
if ($flags -ne '') {$flags = ' (' + $flags +')';}
return $Obj.Result + $flags;
}
用法示例:
#$filePath = "C:\Windows\SysWOW64\regedit.exe";#32 bit native on 64bit windows
$filePath = "C:\Windows\regedit.exe";#64 bit native on 64bit windows | should be 32 bit native on 32bit windows
Get-Bitness2 $filePath $true;
如果您不需要查看详细信息,则可以省略第二个参数
此处描述了一种快速且可能很脏的方法:https://superuser.com/a/889267。您在编辑器中打开DLL,并检查“ PE”序列之后的第一个字符。
显然,您可以在可移植可执行文件的头中找到它。corflags.exe实用程序能够向您显示它是否针对x64。希望这可以帮助您找到有关它的更多信息。
>corflags libzmq.dll \n\n ... corflags : error CF008 : The specified file does not have a valid managed header