对于来自Google的人们来说,他们正在寻找一种快速降序对numpy
数组图像进行下采样以供机器学习应用程序使用的方法,这是一种超快速方法(从此处改编)。仅当输入尺寸为输出尺寸的倍数时,此方法才有效。
以下示例将采样率从128x128降采样为64x64(可以轻松更改)。
频道最后订购
# large image is shape (128, 128, 3)
# small image is shape (64, 64, 3)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((output_size, bin_size,
output_size, bin_size, 3)).max(3).max(1)
渠道第一订购
# large image is shape (3, 128, 128)
# small image is shape (3, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((3, output_size, bin_size,
output_size, bin_size)).max(4).max(2)
对于灰度图像,只需将更3
改为1
如下所示:
渠道第一订购
# large image is shape (1, 128, 128)
# small image is shape (1, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((1, output_size, bin_size,
output_size, bin_size)).max(4).max(2)
此方法使用的是最大池化。我发现这是最快的方法。