如何有效解析固定宽度的文件?


84

我试图找到一种解析文件的方法,该文件包含固定宽度的线。例如,前20个字符代表一列,从21:30开始代表另一列,依此类推。

假设该行包含100个字符,将行解析为多个组件的有效方法是什么?

我可以每行使用字符串切片,但是如果行很大,这会有点难看。还有其他快速方法吗?

Answers:


73

由于Python标准库的struct模块是用C编写的,因此使用它非常容易而且非常快捷。

这是可以用来完成您想要的事情的方法。通过为字段中的字符数指定负值,还可以跳过字符列。

import struct

fieldwidths = (2, -10, 24)  # negative widths represent ignored padding fields
fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
                        for fw in fieldwidths)
fieldstruct = struct.Struct(fmtstring)
parse = fieldstruct.unpack_from
print('fmtstring: {!r}, recsize: {} chars'.format(fmtstring, fieldstruct.size))

line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fields = parse(line)
print('fields: {}'.format(fields))

输出:

fmtstring: '2s 10x 24s', recsize: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')

以下修改将使其适应于Python 2或3(并处理Unicode输入):

import struct
import sys

fieldstruct = struct.Struct(fmtstring)
if sys.version_info[0] < 3:
    parse = fieldstruct.unpack_from
else:
    # converts unicode input to byte string and results back to unicode string
    unpack = fieldstruct.unpack_from
    parse = lambda line: tuple(s.decode() for s in unpack(line.encode()))

正如您所考虑的那样,这是一种处理字符串切片的方法,但担心它可能变得太丑陋。它的好处是,除了不那么丑陋之外,它还可以在Python 2和3中保持不变,并且能够处理Unicode字符串。在速度方面,它当然比基于struct模块的版本慢,但是可以通过删除具有填充字段的功能来稍微加快速度。

try:
    from itertools import izip_longest  # added in Py 2.6
except ImportError:
    from itertools import zip_longest as izip_longest  # name change in Py 3.x

try:
    from itertools import accumulate  # added in Py 3.2
except ImportError:
    def accumulate(iterable):
        'Return running totals (simplified version).'
        total = next(iterable)
        yield total
        for value in iterable:
            total += value
            yield total

def make_parser(fieldwidths):
    cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths))
    pads = tuple(fw < 0 for fw in fieldwidths) # bool values for padding fields
    flds = tuple(izip_longest(pads, (0,)+cuts, cuts))[:-1]  # ignore final one
    parse = lambda line: tuple(line[i:j] for pad, i, j in flds if not pad)
    # optional informational function attributes
    parse.size = sum(abs(fw) for fw in fieldwidths)
    parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
                                                for fw in fieldwidths)
    return parse

line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)  # negative widths represent ignored padding fields
parse = make_parser(fieldwidths)
fields = parse(line)
print('format: {!r}, rec size: {} chars'.format(parse.fmtstring, parse.size))
print('fields: {}'.format(fields))

输出:

format: '2s 10x 24s', rec size: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')

+1很好。在某种程度上,我认为这与我的方法类似(至少在获得结果时),但显然更快。
Reiner Gerecke

1
unicode如何工作?还是utf-8编码的字符串?struct.unpack似乎对二进制数据进行操作。我无法正常工作。
Reiner Gerecke

3
@Reiner Gerecke:struct模块旨在对二进制数据进行操作。具有固定宽度字段的文件是旧工作,也很可能早于UTF-8的日期(如果不按时间顺序,请记住这一点)。从文件读取的字节是二进制数据。您的文件中没有Unicode。您需要解码字节才能获得unicode。
约翰·马钦

1
@Reiner Gerecke:澄清:在那些旧文件格式中,每个字段都是固定数量的字节,而不是固定数量的字符。尽管不太可能使用UTF-8进行编码,但可以使用每个字符具有可变字节数的编码进行编码,例如gbk,big5,euc-jp,shift-jis等。如果您希望使用unicode,则可以无法一次解码整个记录;您需要解码每个字段。
约翰·马钦

1
当您尝试将其应用于ASCII字符集以外的文本的Unicode值(如Python 3)时,这会完全崩溃,其中“固定宽度”表示“固定字符数”,而不是字节。
马丁·皮特斯

69

我不确定这是否有效,但它应该可读(与手动切片相反)。我定义了一个函数slices,该函数获取字符串和列的长度,并返回子字符串。我使它成为一个生成器,因此对于很长的行,它不会构建临时的子字符串列表。

def slices(s, *args):
    position = 0
    for length in args:
        yield s[position:position + length]
        position += length

In [32]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2))
Out[32]: ['ab']

In [33]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2, 10, 50))
Out[33]: ['ab', 'cdefghijkl', 'mnopqrstuvwxyz0123456789']

In [51]: d,c,h = slices('dogcathouse', 3, 3, 5)
In [52]: d,c,h
Out[52]: ('dog', 'cat', 'house')

但是我认为如果您一次需要所有列,则会失去生成器的优势。一个人可以从中受益的地方是当您想一遍一遍地处理列时(例如循环)。


2
AFAICT,此方法比慢struct,但易读且易于处理。我已经使用slices functionstruct模块和re模块进行了一些测试,结果发现大型文件struct是最快的,排re第二(慢1.5倍)和slices第三(慢2倍)。但是,使用的开销很小,struct因此您slices function可以更快地处理较小的文件。
YeO

26

比已经提到的解决方案更简单,更漂亮的两个选项:

首先是使用熊猫:

import pandas as pd

path = 'filename.txt'

# Using Pandas with a column specification
col_specification = [(0, 20), (21, 30), (31, 50), (51, 100)]
data = pd.read_fwf(path, colspecs=col_specification)

第二个使用numpy.loadtxt的选项:

import numpy as np

# Using NumPy and letting it figure it out automagically
data_also = np.loadtxt(path)

这实际上取决于您要以何种方式使用数据。


就速度而言,这与公认的答案是否具有竞争力?
asachet

1
还没有测试过,但是它应该比公认的答案要快得多。
Tom M


14

下面的代码概述了如果要处理一些固定的列宽固定文件,可能要做什么。

“严重” =多种文件类型中的多种记录类型,最多记录1000个字节,布局定义者和“对立”生产者/消费者是政府部门,其态度是,布局更改导致未使用的列,多达一百万条记录在一个文件中,...

特点:预编译结构格式。忽略不需要的列。将输入字符串转换为所需的数据类型(略去了错误处理)。将记录转换为对象实例(或字典,或根据需要命名为元组)。

码:

import struct, datetime, io, pprint

# functions for converting input fields to usable data
cnv_text = rstrip
cnv_int = int
cnv_date_dmy = lambda s: datetime.datetime.strptime(s, "%d%m%Y") # ddmmyyyy
# etc

# field specs (field name, start pos (1-relative), len, converter func)
fieldspecs = [
    ('surname', 11, 20, cnv_text),
    ('given_names', 31, 20, cnv_text),
    ('birth_date', 51, 8, cnv_date_dmy),
    ('start_date', 71, 8, cnv_date_dmy),
    ]

fieldspecs.sort(key=lambda x: x[1]) # just in case

# build the format for struct.unpack
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
    start = fieldspec[1] - 1
    end = start + fieldspec[2]
    if start > unpack_len:
        unpack_fmt += str(start - unpack_len) + "x"
    unpack_fmt += str(end - start) + "s"
    unpack_len = end
field_indices = range(len(fieldspecs))
print unpack_len, unpack_fmt
unpacker = struct.Struct(unpack_fmt).unpack_from

class Record(object):
    pass
    # or use named tuples

raw_data = """\
....v....1....v....2....v....3....v....4....v....5....v....6....v....7....v....8
          Featherstonehaugh   Algernon Marmaduke  31121969            01012005XX
"""

f = cStringIO.StringIO(raw_data)
headings = f.next()
for line in f:
    # The guts of this loop would of course be hidden away in a function/method
    # and could be made less ugly
    raw_fields = unpacker(line)
    r = Record()
    for x in field_indices:
        setattr(r, fieldspecs[x][0], fieldspecs[x][3](raw_fields[x]))
    pprint.pprint(r.__dict__)
    print "Customer name:", r.given_names, r.surname

输出:

78 10x20s20s8s12x8s
{'birth_date': datetime.datetime(1969, 12, 31, 0, 0),
 'given_names': 'Algernon Marmaduke',
 'start_date': datetime.datetime(2005, 1, 1, 0, 0),
 'surname': 'Featherstonehaugh'}
Customer name: Algernon Marmaduke Featherstonehaugh

如何更新此代码以分析大于1000个字节的记录?我struct.error: unpack_from requires a buffer of at least 1157 bytes
遇到

4
> str = '1234567890'
> w = [0,2,5,7,10]
> [ str[ w[i-1] : w[i] ] for i in range(1,len(w)) ]
['12', '345', '67', '890']

1

这是基于John Machin的答案的Python 3简单模块-根据需要进行调整:)

"""
fixedwidth

Parse and iterate through a fixedwidth text file, returning record objects.

Adapted from https://stackoverflow.com/a/4916375/243392


USAGE

    import fixedwidth, pprint

    # define the fixed width fields we want
    # fieldspecs is a list of [name, description, start, width, type] arrays.
    fieldspecs = [
        ["FILEID", "File Identification", 1, 6, "A/N"],
        ["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
        ["SUMLEV", "Summary Level", 9, 3, "A/N"],
        ["LOGRECNO", "Logical Record Number", 19, 7, "N"],
        ["POP100", "Population Count (100%)", 30, 9, "N"],
    ]

    # define the fieldtype conversion functions
    fieldtype_fns = {
        'A': str.rstrip,
        'A/N': str.rstrip,
        'N': int,
    }

    # iterate over record objects in the file
    with open(f, 'rb'):
        for record in fixedwidth.reader(f, fieldspecs, fieldtype_fns):
            pprint.pprint(record.__dict__)

    # output:
    {'FILEID': 'SF1ST', 'LOGRECNO': 2, 'POP100': 1, 'STUSAB': 'TX', 'SUMLEV': '040'}
    {'FILEID': 'SF1ST', 'LOGRECNO': 3, 'POP100': 2, 'STUSAB': 'TX', 'SUMLEV': '040'}    
    ...

"""

import struct, io


# fieldspec columns
iName, iDescription, iStart, iWidth, iType = range(5)


def get_struct_unpacker(fieldspecs):
    """
    Build the format string for struct.unpack to use, based on the fieldspecs.
    fieldspecs is a list of [name, description, start, width, type] arrays.
    Returns a string like "6s2s3s7x7s4x9s".
    """
    unpack_len = 0
    unpack_fmt = ""
    for fieldspec in fieldspecs:
        start = fieldspec[iStart] - 1
        end = start + fieldspec[iWidth]
        if start > unpack_len:
            unpack_fmt += str(start - unpack_len) + "x"
        unpack_fmt += str(end - start) + "s"
        unpack_len = end
    struct_unpacker = struct.Struct(unpack_fmt).unpack_from
    return struct_unpacker


class Record(object):
    pass
    # or use named tuples


def reader(f, fieldspecs, fieldtype_fns):
    """
    Wrap a fixedwidth file and return records according to the given fieldspecs.
    fieldspecs is a list of [name, description, start, width, type] arrays.
    fieldtype_fns is a dictionary of functions used to transform the raw string values, 
    one for each type.
    """

    # make sure fieldspecs are sorted properly
    fieldspecs.sort(key=lambda fieldspec: fieldspec[iStart])

    struct_unpacker = get_struct_unpacker(fieldspecs)

    field_indices = range(len(fieldspecs))

    for line in f:
        raw_fields = struct_unpacker(line) # split line into field values
        record = Record()
        for i in field_indices:
            fieldspec = fieldspecs[i]
            fieldname = fieldspec[iName]
            s = raw_fields[i].decode() # convert raw bytes to a string
            fn = fieldtype_fns[fieldspec[iType]] # get conversion function
            value = fn(s) # convert string to value (eg to an int)
            setattr(record, fieldname, value)
        yield record


if __name__=='__main__':

    # test module

    import pprint, io

    # define the fields we want
    # fieldspecs are [name, description, start, width, type]
    fieldspecs = [
        ["FILEID", "File Identification", 1, 6, "A/N"],
        ["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
        ["SUMLEV", "Summary Level", 9, 3, "A/N"],
        ["LOGRECNO", "Logical Record Number", 19, 7, "N"],
        ["POP100", "Population Count (100%)", 30, 9, "N"],
    ]

    # define a conversion function for integers
    def to_int(s):
        """
        Convert a numeric string to an integer.
        Allows a leading ! as an indicator of missing or uncertain data.
        Returns None if no data.
        """
        try:
            return int(s)
        except:
            try:
                return int(s[1:]) # ignore a leading !
            except:
                return None # assume has a leading ! and no value

    # define the conversion fns
    fieldtype_fns = {
        'A': str.rstrip,
        'A/N': str.rstrip,
        'N': to_int,
        # 'N': int,
        # 'D': lambda s: datetime.datetime.strptime(s, "%d%m%Y"), # ddmmyyyy
        # etc
    }

    # define a fixedwidth sample
    sample = """\
SF1ST TX04089000  00000023748        1 
SF1ST TX04090000  00000033748!       2
SF1ST TX04091000  00000043748!        
"""
    sample_data = sample.encode() # convert string to bytes
    file_like = io.BytesIO(sample_data) # create a file-like wrapper around bytes

    # iterate over record objects in the file
    for record in reader(file_like, fieldspecs, fieldtype_fns):
        # print(record)
        pprint.pprint(record.__dict__)

1

这就是我如何使用包含字段开始和结束位置的字典来解决的。提供起点和终点也有助于我在专栏的长度上管理更改。

# fixed length
#      '---------- ------- ----------- -----------'
line = '20.06.2019 myname  active      mydevice   '
SLICES = {'date_start': 0,
         'date_end': 10,
         'name_start': 11,
         'name_end': 18,
         'status_start': 19,
         'status_end': 30,
         'device_start': 31,
         'device_end': 42}

def get_values_as_dict(line, SLICES):
    values = {}
    key_list = {key.split("_")[0] for key in SLICES.keys()}
    for key in key_list:
       values[key] = line[SLICES[key+"_start"]:SLICES[key+"_end"]].strip()
    return values

>>> print (get_values_as_dict(line,SLICES))
{'status': 'active', 'name': 'myname', 'date': '20.06.2019', 'device': 'mydevice'}

1

以下是NumPy的引擎盖下使用(很多很多简化,但仍-这个代码是在发现LineSplitter class_iotools module):

import numpy as np

DELIMITER = (20, 10, 10, 20, 10, 10, 20)

idx = np.cumsum([0] + list(DELIMITER))
slices = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])]

def parse(line):
    return [line[s] for s in slices]

它不处理用于忽略列的负定界符,因此它不如通用struct,但速度更快。


0

只要保持条理清晰,字符串切片就不必太丑陋。考虑将字段宽度存储在字典中,然后使用关联的名称创建对象:

from collections import OrderedDict

class Entry:
    def __init__(self, line):

        name2width = OrderedDict()
        name2width['foo'] = 2
        name2width['bar'] = 3
        name2width['baz'] = 2

        pos = 0
        for name, width in name2width.items():

            val = line[pos : pos + width]
            if len(val) != width:
                raise ValueError("not enough characters: \'{}\'".format(line))

            setattr(self, name, val)
            pos += width

file = "ab789yz\ncd987wx\nef555uv"

entry = []

for line in file.split('\n'):
    entry.append(Entry(line))

print(entry[1].bar) # output: 987

0

因为我以前的工作通常处理一百万行的fixwidth数据,所以当我开始使用Python时就对此问题进行了研究。

有固定宽度的2种类型

  1. ASCII FixedWidth(ASCII字符长度= 1,双字节编码字符长度= 2)
  2. Unicode FixedWidth(ASCII字符和双字节编码字符长度= 1)

如果资源字符串全部由ascii字符组成,则ASCII FixedWidth = Unicode FixedWidth

幸运的是,py3中的字符串和字节有所不同,这在处理双字节编码字符(eggbk,big5,euc-jp,shift-jis等)时减少了很多混乱。
为了处理“ ASCII FixedWidth”,通常将字符串转换为字节,然后拆分。

在不导入第三方模块的情况下,
totalLineCount = 100万,lineLength = 800字节,FixedWidthArgs =(10,25,4,....),我以大约5种方式拆分了Line,并得出以下结论:

  1. struct是最快的(1x)
  2. 仅循环,而不是预处理FixedWidthArgs最慢(5x +)
  3. slice(bytes) 快于 slice(string)
  4. 源字符串是字节测试结果:struct(1x),operator.itemgetter(1.7x),预编译sliceObject和列表推导(2.8x),re.patten对象(2.9x)

处理大文件时,我们经常使用with open ( file, "rb") as f:
该方法遍历上述文件之一,大约需要2.4秒。
我认为适当的处理程序可以处理100万行数据,将每一行分成20个字段,并且所需时间不到2.4秒。

我只有找到stuctitemgetter满足要求

ps:为了正常显示,我将unistr str转换为字节。如果您在双字节环境中,则无需执行此操作。

from itertools import accumulate
from operator import itemgetter

def oprt_parser(sArgs):
    sum_arg = tuple(accumulate(abs(i) for i in sArgs))
    # Negative parameter field index
    cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
    # Get slice args and Ignore fields of negative length
    ig_Args = tuple(item for i, item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
    # Generate `operator.itemgetter` object
    oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
    return oprtObj

lineb = b'abcdefghijklmnopqrstuvwxyz\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4\xb6\xee\xb7\xa2\xb8\xf6\xba\xcd0123456789'
line = lineb.decode("GBK")

# Unicode Fixed Width
fieldwidthsU = (13, -13, 4, -4, 5,-5) # Negative width fields is ignored
# ASCII Fixed Width
fieldwidths = (13, -13, 8, -8, 5,-5) # Negative width fields is ignored
# Unicode FixedWidth processing
parse = oprt_parser(fieldwidthsU)
fields = parse(line)
print('Unicode FixedWidth','fields: {}'.format(tuple(map(lambda s: s.encode("GBK"), fields))))
# ASCII FixedWidth processing
parse = oprt_parser(fieldwidths)
fields = parse(lineb)
print('ASCII FixedWidth','fields: {}'.format(fields))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)
parse = oprt_parser(fieldwidths)
fields = parse(line)
print(f"fields: {fields}")

输出:

Unicode FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
ASCII FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')

oprt_parser是4倍make_parser(列表理解力+分片)


在研究过程中,发现当cpu速度更快时,该re方法的效率似乎提高得更快。
由于我没有更多更好的计算机要测试,因此请提供我的测试代码,如果有兴趣的人可以使用速度更快的计算机进行测试。

运行环境:

  • 操作系统:win10
  • 的Python:3.7.2
  • 处理器:AMD Athlon x3 450
  • 高清:希捷1T
import timeit
import time
import re
from itertools import accumulate
from operator import itemgetter

def eff2(stmt,onlyNum= False,showResult=False):
    '''test function'''
    if onlyNum:
        rl = timeit.repeat(stmt=stmt,repeat=roundI,number=timesI,globals=globals())
        avg = sum(rl) / len(rl)
        return f"{avg * (10 ** 6)/timesI:0.4f}"
    else:
        rl = timeit.repeat(stmt=stmt,repeat=10,number=1000,globals=globals())
        avg = sum(rl) / len(rl)
        print(f"【{stmt}】")
        print(f"\tquick avg = {avg * (10 ** 6)/1000:0.4f} s/million")
        if showResult:
            print(f"\t  Result = {eval(stmt)}\n\t  timelist = {rl}\n")
        else:
            print("")

def upDouble(argList,argRate):
    return [c*argRate for c in argList]

tbStr = "000000001111000002222真2233333333000000004444444QAZ55555555000000006666666ABC这些事中文字abcdefghijk"
tbBytes = tbStr.encode("GBK")
a20 = (4,4,2,2,2,3,2,2, 2 ,2,8,8,7,3,8,8,7,3, 12 ,11)
a20U = (4,4,2,2,2,3,2,2, 1 ,2,8,8,7,3,8,8,7,3, 6 ,11)
Slng = 800
rateS = Slng // 100

tStr = "".join(upDouble(tbStr , rateS))
tBytes = tStr.encode("GBK")
spltArgs = upDouble( a20 , rateS)
spltArgsU = upDouble( a20U , rateS)

testList = []
timesI = 100000
roundI = 5
print(f"test round = {roundI} timesI = {timesI} sourceLng = {len(tStr)} argFieldCount = {len(spltArgs)}")


print(f"pure str \n{''.ljust(60,'-')}")
# ==========================================
def str_parser(sArgs):
    def prsr(oStr):
        r = []
        r_ap = r.append
        stt=0
        for lng in sArgs:
            end = stt + lng 
            r_ap(oStr[stt:end])
            stt = end 
        return tuple(r)
    return prsr

Str_P = str_parser(spltArgsU)
# eff2("Str_P(tStr)")
testList.append("Str_P(tStr)")

print(f"pure bytes \n{''.ljust(60,'-')}")
# ==========================================
def byte_parser(sArgs):
    def prsr(oBytes):
        r, stt = [], 0
        r_ap = r.append
        for lng in sArgs:
            end = stt + lng
            r_ap(oBytes[stt:end])
            stt = end
        return r
    return prsr
Byte_P = byte_parser(spltArgs)
# eff2("Byte_P(tBytes)")
testList.append("Byte_P(tBytes)")

# re,bytes
print(f"re compile object \n{''.ljust(60,'-')}")
# ==========================================


def rebc_parser(sArgs,otype="b"):
    re_Args = "".join([f"(.{{{n}}})" for n in sArgs])
    if otype == "b":
        rebc_Args = re.compile(re_Args.encode("GBK"))
    else:
        rebc_Args = re.compile(re_Args)
    def prsr(oBS):
        return rebc_Args.match(oBS).groups()
    return prsr
Rebc_P = rebc_parser(spltArgs)
# eff2("Rebc_P(tBytes)")
testList.append("Rebc_P(tBytes)")

Rebc_Ps = rebc_parser(spltArgsU,"s")
# eff2("Rebc_Ps(tStr)")
testList.append("Rebc_Ps(tStr)")


print(f"struct \n{''.ljust(60,'-')}")
# ==========================================

import struct
def struct_parser(sArgs):
    struct_Args = " ".join(map(lambda x: str(x) + "s", sArgs))
    def prsr(oBytes):
        return struct.unpack(struct_Args, oBytes)
    return prsr
Struct_P = struct_parser(spltArgs)
# eff2("Struct_P(tBytes)")
testList.append("Struct_P(tBytes)")

print(f"List Comprehensions + slice \n{''.ljust(60,'-')}")
# ==========================================
import itertools
def slice_parser(sArgs):
    tl = tuple(itertools.accumulate(sArgs))
    slice_Args = tuple(zip((0,)+tl,tl))
    def prsr(oBytes):
        return [oBytes[s:e] for s, e in slice_Args]
    return prsr
Slice_P = slice_parser(spltArgs)
# eff2("Slice_P(tBytes)")
testList.append("Slice_P(tBytes)")

def sliceObj_parser(sArgs):
    tl = tuple(itertools.accumulate(sArgs))
    tl2 = tuple(zip((0,)+tl,tl))
    sliceObj_Args = tuple(slice(s,e) for s,e in tl2)
    def prsr(oBytes):
        return [oBytes[so] for so in sliceObj_Args]
    return prsr
SliceObj_P = sliceObj_parser(spltArgs)
# eff2("SliceObj_P(tBytes)")
testList.append("SliceObj_P(tBytes)")

SliceObj_Ps = sliceObj_parser(spltArgsU)
# eff2("SliceObj_Ps(tStr)")
testList.append("SliceObj_Ps(tStr)")


print(f"operator.itemgetter + slice object \n{''.ljust(60,'-')}")
# ==========================================

def oprt_parser(sArgs):
    sum_arg = tuple(accumulate(abs(i) for i in sArgs))
    cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
    ig_Args = tuple(item for i,item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
    oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
    return oprtObj

Oprt_P = oprt_parser(spltArgs)
# eff2("Oprt_P(tBytes)")
testList.append("Oprt_P(tBytes)")

Oprt_Ps = oprt_parser(spltArgsU)
# eff2("Oprt_Ps(tStr)")
testList.append("Oprt_Ps(tStr)")

print("|".join([s.split("(")[0].center(11," ") for s in testList]))
print("|".join(["".center(11,"-") for s in testList]))
print("|".join([eff2(s,True).rjust(11," ") for s in testList]))

输出:

Test round = 5 timesI = 100000 sourceLng = 744 argFieldCount = 20
...
...
   Str_P | Byte_P | Rebc_P | Rebc_Ps | Struct_P | Slice_P | SliceObj_P|SliceObj_Ps| Oprt_P | Oprt_Ps
-----------|-----------|-----------|-----------|-- ---------|-----------|-----------|-----------|---- -------|-----------
     9.6315| 7.5952| 4.4187| 5.6867| 1.5123| 5.2915| 4.2673| 5.7121| 2.4713| 3.9051

@MartijnPieters更高效的功能
Notback
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.