有一个multiprocessing
名为pathos的分支(注意:使用github上的版本不需要),因为starmap
map函数镜像了python map的API,因此map可以采用多个参数。使用pathos
,您通常还可以在解释器中进行多处理,而不会卡在__main__
块中。经过一些轻微的更新后,Pathos即将发布,主要是转换为python3.x。
Python 2.7.5 (default, Sep 30 2013, 20:15:49)
[GCC 4.2.1 (Apple Inc. build 5566)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> def func(a,b):
... print a,b
...
>>>
>>> from pathos.multiprocessing import ProcessingPool
>>> pool = ProcessingPool(nodes=4)
>>> pool.map(func, [1,2,3], [1,1,1])
1 1
2 1
3 1
[None, None, None]
>>>
>>> # also can pickle stuff like lambdas
>>> result = pool.map(lambda x: x**2, range(10))
>>> result
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>
>>> # also does asynchronous map
>>> result = pool.amap(pow, [1,2,3], [4,5,6])
>>> result.get()
[1, 32, 729]
>>>
>>> # or can return a map iterator
>>> result = pool.imap(pow, [1,2,3], [4,5,6])
>>> result
<processing.pool.IMapIterator object at 0x110c2ffd0>
>>> list(result)
[1, 32, 729]
pathos
有几种方法可以使您获得的确切行为starmap
。
>>> def add(*x):
... return sum(x)
...
>>> x = [[1,2,3],[4,5,6]]
>>> import pathos
>>> import numpy as np
>>> # use ProcessPool's map and transposing the inputs
>>> pp = pathos.pools.ProcessPool()
>>> pp.map(add, *np.array(x).T)
[6, 15]
>>> # use ProcessPool's map and a lambda to apply the star
>>> pp.map(lambda x: add(*x), x)
[6, 15]
>>> # use a _ProcessPool, which has starmap
>>> _pp = pathos.pools._ProcessPool()
>>> _pp.starmap(add, x)
[6, 15]
>>>
partial
也不lambda
做。我认为这与将函数传递给子流程(通过pickle
)的奇怪方式有关。