设置/使其变慢
首先,该程序将在大约相同的时间运行,无论:
sumspeed$ time ./sum_groups < groups_shuffled
11558358
real 0m0.705s
user 0m0.692s
sys 0m0.013s
sumspeed$ time ./sum_groups < groups_sorted
24986825
real 0m0.722s
user 0m0.711s
sys 0m0.012s
大部分时间都花在输入循环中。但是,由于我们对感兴趣,因此请grouped_sum()
忽略它。
将基准循环从10次迭代更改为1000次迭代,grouped_sum()
开始控制运行时间:
sumspeed$ time ./sum_groups < groups_shuffled
1131838420
real 0m1.828s
user 0m1.811s
sys 0m0.016s
sumspeed$ time ./sum_groups < groups_sorted
2494032110
real 0m3.189s
user 0m3.169s
sys 0m0.016s
性能差异
现在,我们可以使用它perf
来找到程序中最热门的地方。
sumspeed$ perf record ./sum_groups < groups_shuffled
1166805982
[ perf record: Woken up 1 times to write data ]
[kernel.kallsyms] with build id 3a2171019937a2070663f3b6419330223bd64e96 not found, continuing without symbols
Warning:
Processed 4636 samples and lost 6.95% samples!
[ perf record: Captured and wrote 0.176 MB perf.data (4314 samples) ]
sumspeed$ perf record ./sum_groups < groups_sorted
2571547832
[ perf record: Woken up 2 times to write data ]
[kernel.kallsyms] with build id 3a2171019937a2070663f3b6419330223bd64e96 not found, continuing without symbols
[ perf record: Captured and wrote 0.420 MB perf.data (10775 samples) ]
他们之间的区别:
sumspeed$ perf diff
[...]
# Event 'cycles:uppp'
#
# Baseline Delta Abs Shared Object Symbol
# ........ ......... ................... ........................................................................
#
57.99% +26.33% sum_groups [.] main
12.10% -7.41% libc-2.23.so [.] _IO_getc
9.82% -6.40% libstdc++.so.6.0.21 [.] std::num_get<char, std::istreambuf_iterator<char, std::char_traits<c
6.45% -4.00% libc-2.23.so [.] _IO_ungetc
2.40% -1.32% libc-2.23.so [.] _IO_sputbackc
1.65% -1.21% libstdc++.so.6.0.21 [.] 0x00000000000dc4a4
1.57% -1.20% libc-2.23.so [.] _IO_fflush
1.71% -1.07% libstdc++.so.6.0.21 [.] std::istream::sentry::sentry
1.22% -0.77% libstdc++.so.6.0.21 [.] std::istream::operator>>
0.79% -0.47% libstdc++.so.6.0.21 [.] __gnu_cxx::stdio_sync_filebuf<char, std::char_traits<char> >::uflow
[...]
中有更多时间main()
,这可能是grouped_sum()
内联的。太好了,非常感谢。
性能注释
有没有在时间都花在差别里面 main()
?
随机播放:
sumspeed$ perf annotate -i perf.data.old
[...]
│ // This is the function whose performance I am interested in
│ void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
│ for (size_t i = 0; i < n; ++i) {
│180: xor %eax,%eax
│ test %rdi,%rdi
│ ↓ je 1a4
│ nop
│ p_out[p_g[i]] += p_x[i];
6,88 │190: movslq (%r9,%rax,4),%rdx
58,54 │ mov (%r8,%rax,4),%esi
│ #include <chrono>
│ #include <vector>
│
│ // This is the function whose performance I am interested in
│ void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
│ for (size_t i = 0; i < n; ++i) {
3,86 │ add $0x1,%rax
│ p_out[p_g[i]] += p_x[i];
29,61 │ add %esi,(%rcx,%rdx,4)
[...]
排序:
sumspeed$ perf annotate -i perf.data
[...]
│ // This is the function whose performance I am interested in
│ void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
│ for (size_t i = 0; i < n; ++i) {
│180: xor %eax,%eax
│ test %rdi,%rdi
│ ↓ je 1a4
│ nop
│ p_out[p_g[i]] += p_x[i];
1,00 │190: movslq (%r9,%rax,4),%rdx
55,12 │ mov (%r8,%rax,4),%esi
│ #include <chrono>
│ #include <vector>
│
│ // This is the function whose performance I am interested in
│ void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
│ for (size_t i = 0; i < n; ++i) {
0,07 │ add $0x1,%rax
│ p_out[p_g[i]] += p_x[i];
43,28 │ add %esi,(%rcx,%rdx,4)
[...]
不,这是两个相同的指令。因此,在两种情况下它们都需要花费很长时间,但对数据进行排序时甚至更糟。
性能统计
好的。但是我们应该将它们运行相同的次数,因此由于某种原因,每条指令必须变慢。让我们看看怎么perf stat
说。
sumspeed$ perf stat ./sum_groups < groups_shuffled
1138880176
Performance counter stats for './sum_groups':
1826,232278 task-clock (msec) # 0,999 CPUs utilized
72 context-switches # 0,039 K/sec
1 cpu-migrations # 0,001 K/sec
4 076 page-faults # 0,002 M/sec
5 403 949 695 cycles # 2,959 GHz
930 473 671 stalled-cycles-frontend # 17,22% frontend cycles idle
9 827 685 690 instructions # 1,82 insn per cycle
# 0,09 stalled cycles per insn
2 086 725 079 branches # 1142,639 M/sec
2 069 655 branch-misses # 0,10% of all branches
1,828334373 seconds time elapsed
sumspeed$ perf stat ./sum_groups < groups_sorted
2496546045
Performance counter stats for './sum_groups':
3186,100661 task-clock (msec) # 1,000 CPUs utilized
5 context-switches # 0,002 K/sec
0 cpu-migrations # 0,000 K/sec
4 079 page-faults # 0,001 M/sec
9 424 565 623 cycles # 2,958 GHz
4 955 937 177 stalled-cycles-frontend # 52,59% frontend cycles idle
9 829 009 511 instructions # 1,04 insn per cycle
# 0,50 stalled cycles per insn
2 086 942 109 branches # 655,014 M/sec
2 078 204 branch-misses # 0,10% of all branches
3,186768174 seconds time elapsed
只有一件事很突出:stalled-cycles-frontend。
好的,指令流水线正在停滞。在前端。确切的说,这可能在微体系结构之间有所不同。
我有一个猜测。如果您很慷慨,您甚至可以称其为假设。
假设
通过对输入进行排序,可以增加写入的局部性。实际上,它们将非常本地化;您所做的几乎所有添加操作都将写入与上一个相同的位置。
这对缓存很有用,但对管道却没有用。您正在引入数据依赖关系,从而阻止下一条加法指令继续执行,直到前一条加法完成(或者使结果可用于后续指令)为止。
那是你的问题。
我认为。
修复它
多个和向量
实际上,让我们尝试一下。如果我们使用多个和向量,在每次加法之间切换它们,然后在最后求和,该怎么办?它花费了我们一些局部性,但是应该删除数据依赖项。
(代码不是很漂亮;不要判断我,互联网!)
#include <iostream>
#include <chrono>
#include <vector>
#ifndef NSUMS
#define NSUMS (4) // must be power of 2 (for masking to work)
#endif
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
for (size_t i = 0; i < n; ++i) {
p_out[i & (NSUMS-1)][p_g[i]] += p_x[i];
}
}
int main() {
std::vector<int> values;
std::vector<int> groups;
std::vector<int> sums[NSUMS];
int n_groups = 0;
// Read in the values and calculate the max number of groups
while(std::cin) {
int value, group;
std::cin >> value >> group;
values.push_back(value);
groups.push_back(group);
if (group >= n_groups) {
n_groups = group+1;
}
}
for (int i=0; i<NSUMS; ++i) {
sums[i].resize(n_groups);
}
// Time grouped sums
std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
int* sumdata[NSUMS];
for (int i = 0; i < NSUMS; ++i) {
sumdata[i] = sums[i].data();
}
for (int i = 0; i < 1000; ++i) {
grouped_sum(values.data(), groups.data(), values.size(), sumdata);
}
for (int i = 1; i < NSUMS; ++i) {
for (int j = 0; j < n_groups; ++j) {
sumdata[0][j] += sumdata[i][j];
}
}
std::chrono::system_clock::time_point end = std::chrono::system_clock::now();
std::cout << (end - start).count() << " with NSUMS=" << NSUMS << std::endl;
return 0;
}
(哦,我还修复了n_groups的计算;它被减一了。)
结果
配置我的makefile以将-DNSUMS=...
arg赋予编译器后,我可以这样做:
sumspeed$ for n in 1 2 4 8 128; do make -s clean && make -s NSUMS=$n && (perf stat ./sum_groups < groups_shuffled && perf stat ./sum_groups < groups_sorted) 2>&1 | egrep '^[0-9]|frontend'; done
1134557008 with NSUMS=1
924 611 882 stalled-cycles-frontend # 17,13% frontend cycles idle
2513696351 with NSUMS=1
4 998 203 130 stalled-cycles-frontend # 52,79% frontend cycles idle
1116188582 with NSUMS=2
899 339 154 stalled-cycles-frontend # 16,83% frontend cycles idle
1365673326 with NSUMS=2
1 845 914 269 stalled-cycles-frontend # 29,97% frontend cycles idle
1127172852 with NSUMS=4
902 964 410 stalled-cycles-frontend # 16,79% frontend cycles idle
1171849032 with NSUMS=4
1 007 807 580 stalled-cycles-frontend # 18,29% frontend cycles idle
1118732934 with NSUMS=8
881 371 176 stalled-cycles-frontend # 16,46% frontend cycles idle
1129842892 with NSUMS=8
905 473 182 stalled-cycles-frontend # 16,80% frontend cycles idle
1497803734 with NSUMS=128
1 982 652 954 stalled-cycles-frontend # 30,63% frontend cycles idle
1180742299 with NSUMS=128
1 075 507 514 stalled-cycles-frontend # 19,39% frontend cycles idle
和向量的最佳数量可能取决于您CPU的流水线深度。我7岁的超极本CPU可能可以用比新型花式台式机CPU所需的更少的向量最大化处理流程。
显然,更多并不一定更好。当我疯狂使用128个和向量时,我们开始遭受缓存未命中的更多痛苦-改组后的输入变得比排序慢,就像您最初预期的那样。我们来了整整一圈!:)
寄存器中的每组总和
(这是在编辑中添加的)
啊,书呆子了!如果您知道输入将被排序并且正在寻找更高的性能,那么至少在我的计算机上,函数的以下重写(没有多余的总和)会更快。
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int* p_out) {
int i = n-1;
while (i >= 0) {
int g = p_g[i];
int gsum = 0;
do {
gsum += p_x[i--];
} while (i >= 0 && p_g[i] == g);
p_out[g] += gsum;
}
}
这一技巧的窍门在于,它允许编译器将gsum
变量(即组的总和)保留在寄存器中。我猜测(但可能是非常错误的),这样做速度更快,因为此处的管道中的反馈循环可能更短,并且/或者更少的内存访问。一个好的分支预测器会使对组相等性的额外检查便宜。
结果
混音输入太糟糕了...
sumspeed$ time ./sum_groups < groups_shuffled
2236354315
real 0m2.932s
user 0m2.923s
sys 0m0.009s
...但是比排序输入的“许多总和”解决方案快40%。
sumspeed$ time ./sum_groups < groups_sorted
809694018
real 0m1.501s
user 0m1.496s
sys 0m0.005s
许多小组的速度会比一些小组的速度慢,因此,这是否是较快的实现,实际上取决于您的数据。而且,与以往一样,在您的CPU型号上。
多个和向量,具有偏移量而不是位掩码
Sopel建议了四个展开的扩展,以替代我的位掩码方法。我已经实施了他们建议的通用版本,可以处理不同的建议NSUMS
。我指望编译器为我们展开内部循环(至少这样做是这样做的NSUMS=4
)。
#include <iostream>
#include <chrono>
#include <vector>
#ifndef NSUMS
#define NSUMS (4) // must be power of 2 (for masking to work)
#endif
#ifndef INNER
#define INNER (0)
#endif
#if INNER
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
size_t i = 0;
int quadend = n & ~(NSUMS-1);
for (; i < quadend; i += NSUMS) {
for (int k=0; k<NSUMS; ++k) {
p_out[k][p_g[i+k]] += p_x[i+k];
}
}
for (; i < n; ++i) {
p_out[0][p_g[i]] += p_x[i];
}
}
#else
// This is the function whose performance I am interested in
void grouped_sum(int* p_x, int *p_g, int n, int** p_out) {
for (size_t i = 0; i < n; ++i) {
p_out[i & (NSUMS-1)][p_g[i]] += p_x[i];
}
}
#endif
int main() {
std::vector<int> values;
std::vector<int> groups;
std::vector<int> sums[NSUMS];
int n_groups = 0;
// Read in the values and calculate the max number of groups
while(std::cin) {
int value, group;
std::cin >> value >> group;
values.push_back(value);
groups.push_back(group);
if (group >= n_groups) {
n_groups = group+1;
}
}
for (int i=0; i<NSUMS; ++i) {
sums[i].resize(n_groups);
}
// Time grouped sums
std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
int* sumdata[NSUMS];
for (int i = 0; i < NSUMS; ++i) {
sumdata[i] = sums[i].data();
}
for (int i = 0; i < 1000; ++i) {
grouped_sum(values.data(), groups.data(), values.size(), sumdata);
}
for (int i = 1; i < NSUMS; ++i) {
for (int j = 0; j < n_groups; ++j) {
sumdata[0][j] += sumdata[i][j];
}
}
std::chrono::system_clock::time_point end = std::chrono::system_clock::now();
std::cout << (end - start).count() << " with NSUMS=" << NSUMS << ", INNER=" << INNER << std::endl;
return 0;
}
结果
该测量了。请注意,由于昨天我在/ tmp中工作,因此我没有完全相同的输入数据。因此,这些结果不能直接与之前的结果进行比较(但可能足够接近)。
sumspeed$ for n in 2 4 8 16; do for inner in 0 1; do make -s clean && make -s NSUMS=$n INNER=$inner && (perf stat ./sum_groups < groups_shuffled && perf stat ./sum_groups < groups_sorted) 2>&1 | egrep '^[0-9]|frontend'; done; done1130558787 with NSUMS=2, INNER=0
915 158 411 stalled-cycles-frontend # 16,96% frontend cycles idle
1351420957 with NSUMS=2, INNER=0
1 589 408 901 stalled-cycles-frontend # 26,21% frontend cycles idle
840071512 with NSUMS=2, INNER=1
1 053 982 259 stalled-cycles-frontend # 23,26% frontend cycles idle
1391591981 with NSUMS=2, INNER=1
2 830 348 854 stalled-cycles-frontend # 45,35% frontend cycles idle
1110302654 with NSUMS=4, INNER=0
890 869 892 stalled-cycles-frontend # 16,68% frontend cycles idle
1145175062 with NSUMS=4, INNER=0
948 879 882 stalled-cycles-frontend # 17,40% frontend cycles idle
822954895 with NSUMS=4, INNER=1
1 253 110 503 stalled-cycles-frontend # 28,01% frontend cycles idle
929548505 with NSUMS=4, INNER=1
1 422 753 793 stalled-cycles-frontend # 30,32% frontend cycles idle
1128735412 with NSUMS=8, INNER=0
921 158 397 stalled-cycles-frontend # 17,13% frontend cycles idle
1120606464 with NSUMS=8, INNER=0
891 960 711 stalled-cycles-frontend # 16,59% frontend cycles idle
800789776 with NSUMS=8, INNER=1
1 204 516 303 stalled-cycles-frontend # 27,25% frontend cycles idle
805223528 with NSUMS=8, INNER=1
1 222 383 317 stalled-cycles-frontend # 27,52% frontend cycles idle
1121644613 with NSUMS=16, INNER=0
886 781 824 stalled-cycles-frontend # 16,54% frontend cycles idle
1108977946 with NSUMS=16, INNER=0
860 600 975 stalled-cycles-frontend # 16,13% frontend cycles idle
911365998 with NSUMS=16, INNER=1
1 494 671 476 stalled-cycles-frontend # 31,54% frontend cycles idle
898729229 with NSUMS=16, INNER=1
1 474 745 548 stalled-cycles-frontend # 31,24% frontend cycles idle
NSUMS=8
是的,内部循环是我计算机上最快的。与我的“本地gsum”方法相比,它还具有不为混洗输入带来可怕影响的额外好处。
有趣的是:NSUMS=16
变得比差NSUMS=8
。这可能是因为我们开始看到更多的高速缓存未命中,或者是因为我们没有足够的寄存器来正确展开内部循环。
.at()
或operator[]
执行了边界的调试模式检查你会看到。