正数和负数序列的计数和求和


31

我想编写一个代码来计算和求和任何正数和负数。
数字可以是正数或负数(不为零)。
我用for循环编写了代码。有创意吗?

数据

[R

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

蟒蛇

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007,

     0.002, 0.002, -0.004, 0.015, 0.002, -0.001, -0.008, 0.01, -0.018, 0.046]

循环

[R

sign_indicator <- ifelse(x > 0, 1,-1)
number_of_sequence <- rep(NA, 20)
n <- 1
for (i in 2:20) {
  if (sign_indicator[i] == sign_indicator[i - 1]) {
    n <- n + 1
  } else{
    n <- 1
  }
  number_of_sequence[i] <- n

}
number_of_sequence[1] <- 1

#############################

summation <- rep(NA, 20)

for (i in 1:20) {
  summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}

蟒蛇

sign_indicator = [1 if i > 0 else -1 for i in X]

number_of_sequence = [1]
N = 1
for i in range(1, len(sign_indicator)):
    if sign_indicator[i] == sign_indicator[i - 1]:
        N += 1
    else:
        N = 1
    number_of_sequence.append(N)

#############################
summation = []

for i in range(len(X)):
    if number_of_sequence[i] == 1:          
          summation.append(X[i])

    else:
        summation.append(sum(X[(i + 1 - number_of_sequence[i]):(i + 1)]))

结果

        x n_of_sequence    sum
1  -0.010             1 -0.010
2   0.003             1  0.003
3  -0.002             1 -0.002
4   0.018             1  0.018
5   0.002             2  0.020
6   0.006             3  0.026
7  -0.012             1 -0.012
8   0.014             1  0.014
9  -0.017             1 -0.017
10 -0.007             2 -0.024
11  0.002             1  0.002
12  0.002             2  0.004
13 -0.004             1 -0.004
14  0.015             1  0.015
15  0.002             2  0.017
16 -0.001             1 -0.001
17 -0.008             2 -0.009
18  0.010             1  0.010
19 -0.018             1 -0.018
20  0.046             1  0.046

Answers:


17

其他解决方案看起来还不错,但是您实际上不需要使用复杂的语言功能或库函数来解决此简单问题。

result, prev = [], None

for idx, cur in enumerate(x):
    if not prev or (prev > 0) != (cur > 0):
        n, summation = 1, cur
    else:
        n, summation = n + 1, summation + cur
    result.append((idx, cur, n, summation))
    prev = cur

如您所见,您实际上并不需要sign_indicator列表,两个for循环或range功能,如问题部分中的代码片段所示。

如果您希望索引从1开始,请使用enumerate(x, 1)代替enumerate(x)

要查看结果,可以运行以下代码

for idx, num, length, summation in result:
     print(f"{idx: >2d} {num: .3f} {length: >2d} {summation: .3f}")

14

在R中,可以使用data.tables rleid创建带有正负数字序列的组,然后在每个组中创建一系列行,并对x值进行累加。

library(data.table)
df <- data.table(x)
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)), by = rleid(sign(x))]
df

#         x n_of_sequence    sum
# 1: -0.010             1 -0.010
# 2:  0.003             1  0.003
# 3: -0.002             1 -0.002
# 4:  0.018             1  0.018
# 5:  0.002             2  0.020
# 6:  0.006             3  0.026
# 7: -0.012             1 -0.012
# 8:  0.014             1  0.014
# 9: -0.017             1 -0.017
#10: -0.007             2 -0.024
#11:  0.002             1  0.002
#12:  0.002             2  0.004
#13: -0.004             1 -0.004
#14:  0.015             1  0.015
#15:  0.002             2  0.017
#16: -0.001             1 -0.001
#17: -0.008             2 -0.009
#18:  0.010             1  0.010
#19: -0.018             1 -0.018
#20:  0.046             1  0.046

我们也可以使用rleidin dplyr来创建组并执行相同的操作。

library(dplyr)
df %>%
  group_by(gr = data.table::rleid(sign(x))) %>%
  mutate(n_of_sequence = row_number(), sum = cumsum(x))

2
n_of_sequence与所需的不相同
Iman

@Iman抱歉,我之前看错了输出。我已经纠正了。
罗纳沙(Ronak Shah)

10

您可以使用rlefrom base到to 来计算每个符号的游程长度,并执行类似的操作。

set.seed(0)
z <- round(rnorm(20, sd = 0.02), 3)
run_lengths <- rle(sign(z))$lengths
run_lengths
# [1] 1 1 1 3 1 1 2 2 1 2 2 1 1 1

要得到 n_of_sequence

n_of_sequence <- run_lengths %>% map(seq) %>% unlist
n_of_sequence
# [1] 1 1 1 1 2 3 1 1 1 2 1 2 1 1 2 1 2 1 1 1

最后,要获得序列的总和,

start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series 
map2(start,run_lengths,~cumsum(z[.x:(.x+.y-1)])) %>% unlist()
# [1] -0.010  0.003 -0.002  0.018  0.020  0.026 -0.012  0.014 -0.017 -0.024
# [11]  0.002  0.004 -0.004  0.015  0.017 -0.001 -0.009  0.010 -0.018  0.046

6

这是R中的一个简单的非循环函数:

count_and_sum <- function(x)
{
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}

因此,您可以执行以下操作:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
count_and_sum(x)
#>         x n    sum
#> 1  -0.010 1 -0.010
#> 2   0.003 1  0.003
#> 3  -0.002 1 -0.002
#> 4   0.018 1  0.018
#> 5   0.002 2  0.020
#> 6   0.006 3  0.026
#> 7  -0.012 1 -0.012
#> 8   0.014 1  0.014
#> 9  -0.017 1 -0.017
#> 10 -0.007 2 -0.024
#> 11  0.002 1  0.002
#> 12  0.002 2  0.004
#> 13 -0.004 1 -0.004
#> 14  0.015 1  0.015
#> 15  0.002 2  0.017
#> 16 -0.001 1 -0.001
#> 17 -0.008 2 -0.009
#> 18  0.010 1  0.010
#> 19 -0.018 1 -0.018
#> 20  0.046 1  0.046

reprex软件包(v0.3.0)创建于2020-02-16


5

这是一个简单的tidyverse解决方案...

library(tidyverse) #or just dplyr and tidyr

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

df <- tibble(x = x) %>% 
  mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
  group_by(seqno) %>%                                  #group by sequences
  mutate(n_of_sequence = row_number(),                 #count row numbers for each group
         sum = cumsum(x)) %>%                          #cumulative sum for each group
  ungroup() %>% 
  select(-seqno)                                       #remove sequence id

df
# A tibble: 20 x 3
        x n_of_sequence     sum
    <dbl>         <int>   <dbl>
 1 -0.01              1 -0.01  
 2  0.003             1  0.003 
 3 -0.002             1 -0.002 
 4  0.018             1  0.018 
 5  0.002             2  0.0200
 6  0.006             3  0.026 
 7 -0.012             1 -0.012 
 8  0.014             1  0.014 
 9 -0.017             1 -0.017 
10 -0.007             2 -0.024 
11  0.002             1  0.002 
12  0.002             2  0.004 
13 -0.004             1 -0.004 
14  0.015             1  0.015 
15  0.002             2  0.017 
16 -0.001             1 -0.001 
17 -0.008             2 -0.009 
18  0.01              1  0.01  
19 -0.018             1 -0.018 
20  0.046             1  0.046 

5

至于Python,有人会使用pandas库提供解决方案。同时,这是一个简单的建议:

class Combiner:
    def __init__(self):
        self.index = self.seq_index = self.summation = 0

    def combine(self, value):
        self.index += 1
        if value * self.summation <= 0:
            self.seq_index = 1
            self.summation = value
        else:
            self.seq_index += 1
            self.summation += value
        return self.index, value, self.seq_index, self.summation

c = Combiner()
lst = [c.combine(v) for v in x]

for t in lst:
    print(f"{t[0]:3} {t[1]:7.3f} {t[2]:3} {t[3]:7.3f}")

输出:

  1  -0.010   1  -0.010
  2   0.003   1   0.003
  3  -0.002   1  -0.002
  4   0.018   1   0.018
  5   0.002   2   0.020
  6   0.006   3   0.026
  7  -0.012   1  -0.012
  8   0.014   1   0.014
  9  -0.017   1  -0.017
 10  -0.007   2  -0.024
 11   0.002   1   0.002
 12   0.002   2   0.004
 13  -0.004   1  -0.004
 14   0.015   1   0.015
 15   0.002   2   0.017
 16  -0.001   1  -0.001
 17  -0.008   2  -0.009
 18   0.010   1   0.010
 19  -0.018   1  -0.018
 20   0.046   1   0.046

如果您需要单独的列表,则可以

idxs, vals, seqs, sums = (list(tpl) for tpl in zip(*lst))

或者,如果迭代器可以,只需

idxs, vals, seqs, sums = zip(*lst)

在这里说明)


5

使用itertools模块的 Python中的两种不同的惰性解决方案。

使用itertools.groupby(并累积)

from itertools import accumulate, groupby

result = (
    item
    for _, group in groupby(x, key=lambda n: n < 0)
    for item in enumerate(accumulate(group), 1)
)

使用itertools.accumulate与自定义的累积函数

from itertools import accumulate

def sign_count_sum(count_sum, value):
    count, prev_sum = count_sum
    same_sign = (prev_sum < 0) is (value < 0)
    if same_sign:
        return count + 1, prev_sum + value
    else:
        return 1, value

result = accumulate(x, sign_count_sum, initial=(0, 0))
next(result)  # needed to skip the initial (0, 0) item

initial关键字参数是在Python 3.8增加。在早期版本中,可以使用itertools.chain(0,0)-tuple开头:

result = accumulate(chain([(0, 0)], x), sign_count_sum)

输出是预期的:

for (i, v), (c, s) in zip(enumerate(x), result):
    print(f"{i:3} {v:7.3f} {c:3} {s:7.3f}")
  0  -0.010   1  -0.010
  1   0.003   1   0.003
  2  -0.002   1  -0.002
  3   0.018   1   0.018
  4   0.002   2   0.020
  5   0.006   3   0.026
  6  -0.012   1  -0.012
  7   0.014   1   0.014
  8  -0.017   1  -0.017
  9  -0.007   2  -0.024
 10   0.002   1   0.002
 11   0.002   2   0.004
 12  -0.004   1  -0.004
 13   0.015   1   0.015
 14   0.002   2   0.017
 15  -0.001   1  -0.001
 16  -0.008   2  -0.009
 17   0.010   1   0.010
 18  -0.018   1  -0.018
 19   0.046   1   0.046

5

我建议[R包亚军这类操作。 streak_run计算相同值的连续出现,sum_run计算窗口中由k参数定义长度的总和。

这是解决方案:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)

data.frame(x, n_of_sequence, sum)

#         x n_of_sequence    sum
# 1  -0.010             1 -0.010
# 2   0.003             1  0.003
# 3  -0.002             1 -0.002
# 4   0.018             1  0.018
# 5   0.002             2  0.020
# 6   0.006             3  0.026
# 7  -0.012             1 -0.012
# 8   0.014             1  0.014
# 9  -0.017             1 -0.017
# 10 -0.007             2 -0.024
# 11  0.002             1  0.002
# 12  0.002             2  0.004
# 13 -0.004             1 -0.004
# 14  0.015             1  0.015
# 15  0.002             2  0.017
# 16 -0.001             1 -0.001
# 17 -0.008             2 -0.009
# 18  0.010             1  0.010
# 19 -0.018             1 -0.018
# 20  0.046             1  0.046

低于基准以比较实际解决方案

set.seed(0)
x <- round(rnorm(10000, sd = 0.02), 3)

library(runner)
runner_streak <- function(x) {
  n_of_sequence <- streak_run(x > 0)
  sum <- sum_run(x, k = n_of_sequence)
}

library(data.table)
dt <- data.table(x)
dt_streak <- function(dt) {
  dt[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}

rle_streak <- function(x) {
  run_lengths <- rle(sign(x))$lengths
  run_lengths

  n_of_sequence <- run_lengths %>% map(seq) %>% unlist

  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)]
  sum <- map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}

library(tidyverse)
df <- tibble(x = x)
tv_streak <- function(x) {
  res <- df %>%
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>%
    group_by(seqno) %>%
    mutate(n_of_sequence = row_number(),
           sum = cumsum(x)) %>%
    ungroup() %>% 
    select(-seqno)  
}

count_and_sum <- function(x) {
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) 
    data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}
microbenchmark::microbenchmark(
  runner_streak(x),
  dt_streak(dt),
  rle_streak(x),
  tv_streak(df),
  count_and_sum(x),
  times = 100L
)


# Unit: milliseconds
#             expr         min          lq        mean      median          uq        max neval
# runner_streak(x)    4.240192    4.833563    6.321697    5.300817    6.543926   14.80221   100
#    dt_streak(dt)    7.648100    8.587887   10.862806    9.650483   11.295488   34.66027   100
#    rle_streak(x)   42.321506   55.397586   64.195692   63.404403   67.813738  167.71444   100
#    tv_streak(df)   31.398885   36.333751   45.141452   40.800077   45.756279  163.19535   100
# count_and_sum(x) 1691.438977 1919.518282 2306.036783 2149.543281 2499.951020 6158.43384   100

1
以微秒为单位进行测量没有多大意义。有些功能的初始开销以微秒为单位,但它们将比其他功能更好地扩展大数据集。也是df <- data.table(x)完整的数据副本。另外,您将在某些示例(另一个完整副本)中打印数据,而在其他示例中则不。
David Arenburg

你是正确的,固定的。
GoGonzo

一些函数返回不同的对象-一些向量和一些数据帧-因此它仍然不是一个很公平的基准。也有一些给出不同的结果。尝试r = runner_streak(x); d = dt_streak(dt) ; all.equal(r, d$sum)。只检查了几下tv_streak给出的一样dt_streak; count_and_sum给出作为同一runner_streak其是从前面的两个不同的。
user2957945

3

在R中,您还可以执行以下操作:

# DATA
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

library(data.table)
dt <- data.table(x = x)

# Create Positive or Negative variable
dt$x_logical <- ifelse(dt$x > 0, "P", "N")

# Create a reference data.frame/table to keep continuous counts
seq_dt <- data.frame(val = rle(x = dt$x_logical)$lengths)
seq_dt$id <- 1:nrow(seq_dt)

# Map id in the main data.table and get cumulative sum
dt$id <- rep(seq_dt$id, seq_dt$val)
dt[, csum := cumsum(x), by = "id"]


        x x_logical id   csum
 1: -0.010         N  1 -0.010
 2:  0.003         P  2  0.003
 3: -0.002         N  3 -0.002
 4:  0.018         P  4  0.018
 5:  0.002         P  4  0.020
 6:  0.006         P  4  0.026
 7: -0.012         N  5 -0.012
 8:  0.014         P  6  0.014
 9: -0.017         N  7 -0.017
10: -0.007         N  7 -0.024
11:  0.002         P  8  0.002
12:  0.002         P  8  0.004
13: -0.004         N  9 -0.004
14:  0.015         P 10  0.015
15:  0.002         P 10  0.017
16: -0.001         N 11 -0.001
17: -0.008         N 11 -0.009
18:  0.010         P 12  0.010
19: -0.018         N 13 -0.018
20:  0.046         P 14  0.046

3

将我的[r]答案扔到帽子里,针对速度进行了优化,并且可以在x的任何长度下工作(不像问号(Asker's)硬编码为长度20):

### data 
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

并且,为了比较我当前(非常慢)的工作计算机上的运行时间,这是使用该线程中所有R解决方案的微基准测试的输出。毫不奇怪,进行最多复制和转换的解决方案往往会变慢。

Unit: microseconds
         expr      min       lq       mean    median       uq      max neval
     my_way()   13.301   19.200   23.38352   21.4010   23.401  20604.0 1e+05
 author_way()   19.702   31.701   40.12371   36.0015   40.502  24393.9 1e+05
      ronak()  856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
      ameer()  388.501  452.002  553.08263  491.3000  548.701 456156.6 1e+05
     andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
      gonzo()   21.901   35.502   48.84946   43.9010   51.001  29519.5 1e+05

--------------编辑-------------- @nicola指出,对于更长的x,我的解决方案不是最快的-应该很明显,因为我通过使用x <-c(x,y)之类的调用不断制作矢量的副本。我只创建了长度= 20的最快解决方案,并且将其微基准化设置得尽可能低。

为了进行更公平的比较,我编辑了所有版本,以我认为最快的方式生成了原始代码,但是我对此表示欢迎。这是我非常慢的系统的完整基准测试代码和结果。我欢迎任何反馈。

# originally benchmarked a few different lengths
for(pie in c(100000)){


my_way<- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

# print(summation)
}




author_way <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)

  sign_indicator <- ifelse(x > 0, 1,-1)
  sky <- length(x)
  number_of_sequence <- rep(NA, sky)
  n <- 1
  for (i in 2:sky) {
    if (sign_indicator[i] == sign_indicator[i - 1]) {
      n <- n + 1
    } else{
      n <- 1
    }
    number_of_sequence[i] <- n

  }
  number_of_sequence[1] <- 1

  #############################

  summation <- rep(NA, sky)

  for (i in 1:sky) {
    summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
  }
}


# other ppls solutions:




ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}



ameer <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  run_lengths <- rle(sign(x))$lengths
  n_of_sequence <- run_lengths %>% map(seq) %>% unlist
  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)] # start points of each series 
  map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()

}


count_and_sum <- function(x){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}



andrew <- function(){
  set.seed(100)
  df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>% 
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
    group_by(seqno) %>%                                  #group by sequences
    mutate(n_of_sequence = row_number(),                 #count row numbers for each group
           sum = cumsum(x)) %>%                          #cumulative sum for each group
    ungroup() %>% 
    select(-seqno) 
}

gonzo <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  n_of_sequence <- runner::streak_run(x > 0)
  sum <- runner::sum_run(x, k = n_of_sequence)
}



mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)

}

如这些结果所示,对于除我优化的长度以外的其他长度,我的版本很慢。x越长,在1000以上的所有东西上,它变得越慢的速度就会变得可笑。我最喜欢的版本是Ronak,它仅是系统上第二快的版本。到目前为止,GoGonzo在我的机器上是最快的。

Unit: milliseconds
         expr        min         lq        mean      median         uq        max neval
     my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105    10
 author_way()    82.2465    83.0873    89.42343    84.78315    85.3638   115.4550    10
      ronak()    68.3922    69.3067    70.41924    69.84625    71.3509    74.7070    10
      ameer()   481.4566   509.7552   521.19034   514.77000   530.1121   579.4707    10
     andrew()   200.9654   202.1898   210.84914   206.20465   211.2006   233.7618    10
      gonzo()    27.3317    28.2550    28.66679    28.50535    28.9104    29.9549    10

另外,其他答案在任何长度上都有效,并且您的基准测试必定有问题。关于data.table@Ronak的解决方案,您的解决方案速度较慢,数量级约为100000。
nicola

感谢@nicola,我只说过问问者的解决方案仅可用于20个项目,而其他解决方案则无济于事-实际上,它们确实如此。我还优化了长度为20的商品的速度,因此我声称是最快的商品。就其价值而言,我也最喜欢Ronaks解决方案,但作者明确要求采用更多不同的方法来解决问题。罗纳克(Ronak)的长度也已经快了1000。
Adverse_Event

并扩大微基准。我对基准进行了重新编码,以便每个解决方案都以其使用的格式创建(x),从而使产生小滴的那些在tibble调用中生成x,对于data.table等也是如此。我重新编码了问询者的原始解决方案,因此可以使用任意长度(只需将x的长度保存在变量中,然后将其替换为20。然后我将其以100.000的长度运行10次迭代。请注意,我的计算机运行缓慢,它运行在第5代处理器上,ddr3为1600 mHz。我正在用这些结果编辑帖子
Adverse_Event

2

在Python中,除了定义用于存储内存变量的类外,还可以使用闭包来实现相同的目的。

def run():
    count = 0
    last_sign = 0

    def sign(i):
        return 1 if i > 0 else -1

    def f(i):
        nonlocal count
        nonlocal last_sign
        if sign(i) == last_sign:
            count = count+1
        else:
            last_sign = sign(i)
            count = 1
        return count

    return f

f = run()
y = [f(i) for i in x]

请注意,这仅适用于Python 3(在Python 2中,我认为您不能像这样修改闭包变量)。求和也类似。


2

我认为循环会更容易阅读,但只是为了好玩,这是使用递归的Python解决方案:

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007, 0.002, 0.002, -0.004, 0.015, 0.002,
     -0.001, -0.008, 0.01, -0.018, 0.046]


def sign(number):
    return 1 if number > 0 else -1


def sum_previous(pos, result=None):
    if not result:
        result = x[pos]
    else:
        result += x[pos]
    if pos == 0 or sign(x[pos]) != sign(x[pos-1]):
        return result
    else:
        return sum_previous(pos-1, result)


results = [sum_previous(i) for i in range(len(x))]
print(results)

2

这是另一种基本的R方法:

data.frame(x,
           n = sequence(rle(sign(x))$lengths),
           sum = Reduce(function(x, y) if (sign(x) == sign(y)) x + y else y, x, accumulate = TRUE))

        x n    sum
1  -0.010 1 -0.010
2   0.003 1  0.003
3  -0.002 1 -0.002
4   0.018 1  0.018
5   0.002 2  0.020
6   0.006 3  0.026
7  -0.012 1 -0.012
8   0.014 1  0.014
9  -0.017 1 -0.017
10 -0.007 2 -0.024
11  0.002 1  0.002
12  0.002 2  0.004
13 -0.004 1 -0.004
14  0.015 1  0.015
15  0.002 2  0.017
16 -0.001 1 -0.001
17 -0.008 2 -0.009
18  0.010 1  0.010
19 -0.018 1 -0.018
20  0.046 1  0.046

只是为了挑剔,Reduce隐藏一个循环,所以这不是一个非循环的解决方案。
nicola

2

一个简单的python答案,忽略0情况:

x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
     -0.017, -0.007, 0.002, 0.002, 
     -0.004, 0.015, 0.002, -0.001, 
     -0.008, 0.01, -0.018, 0.046]

count = 0
sign_positive = x[0] > 0
sign_count = []
for n in x:
    # the idea is to keep track of the sign and increment the 
    # count if it agrees with the current number we are looking at
    if (n > 0 and sign_positive) or (n < 0 and not sign_positive):
        count = count + 1
    # if it does not, the count goes back to 1
    else:
        count = 1
    # Whether we increased the count or not, we update whether the
    # sign was positive or negative
    sign_positive = n > 0
    sign_count.append(count)

# This is just to reproduce the output 
# (although I find the last repetition of the number unnecessary)    
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.002  1  0.002
11  0.002  2  0.002
12 -0.004  1 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046

更复杂的解决方案,也处理0情况:

# To test the 0 case I am changing two numbers to 0
x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
    -0.017, -0.007, 0, 0, 
    -0.004, 0.015, 0.002, -0.001, 
    -0.008, 0.01, -0.018, 0.046]

# The rest is similar
count = 0
# This time we are using a nested ternary assignment 
# to account for the case of 0
# This would be more readable as a function, 
# but what it does is simple
# It returns None if n is 0, 
# True if it is larger than 0 
# and False if it less than 0
sign_positive = None if n == 0 else False if n < 0 else True
sign_count = []
for n in x:
    # We add the case of 0 by adding a third condition where
    # sign_positive was None (meaning the previous
    # number was 0) and the current number is 0.
    if (n > 0 and sign_positive) or \
       (n < 0 and not sign_positive) or \
       (n == 0 and sign_positive == None):
        count = count + 1
    else:
        count = 1
    sign_positive = None if n == 0 else False if n < 0 else True
    sign_count.append(count)
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.000  1  0.000
11  0.000  2  0.000
12 -0.004  3 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.