Answers:
我认为,更简单,更快速的启动方法是执行以下操作:
import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a
和时间:
In [23]: N = 10
In [24]: a = np.random.rand(N,N)
In [25]: %timeit b = np.hstack((a,np.zeros((a.shape[0],1))))
10000 loops, best of 3: 19.6 us per loop
In [27]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 5.62 us per loop
a = np.random.rand((N,N))
为a = np.random.rand(N,N)
np.r_[ ... ]
并且np.c_[ ... ]
是有用的替代品vstack
和hstack
,用方括号[]代替圆()。
几个例子:
: import numpy as np
: N = 3
: A = np.eye(N)
: np.c_[ A, np.ones(N) ] # add a column
array([[ 1., 0., 0., 1.],
[ 0., 1., 0., 1.],
[ 0., 0., 1., 1.]])
: np.c_[ np.ones(N), A, np.ones(N) ] # or two
array([[ 1., 1., 0., 0., 1.],
[ 1., 0., 1., 0., 1.],
[ 1., 0., 0., 1., 1.]])
: np.r_[ A, [A[1]] ] # add a row
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.]])
: # not np.r_[ A, A[1] ]
: np.r_[ A[0], 1, 2, 3, A[1] ] # mix vecs and scalars
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], [1, 2, 3], A[1] ] # lists
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], (1, 2, 3), A[1] ] # tuples
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], 1:4, A[1] ] # same, 1:4 == arange(1,4) == 1,2,3
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
(使用方括号[]代替round()的原因是Python扩展了方括号内的比例,例如1:4,这是重载的奇迹。)
np.c_[ * iterable ]
;参见expression-lists。
用途numpy.append
:
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
append
实际上只是打电话给您concatenate
使用hstack的一种方法是:
b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))
dtype
参数,它是不需要的,甚至是不允许的。尽管您的解决方案足够优雅,但是如果您需要经常“追加”到阵列中,请注意不要使用它。如果您无法一次创建整个数组并在以后填充它,请一次创建一个数组列表,并hstack
全部创建一次。
我发现以下最优雅的东西:
b = np.insert(a, 3, values=0, axis=1) # Insert values before column 3
的优点insert
是,它还允许您在数组内的其他位置插入列(或行)。同样,除了插入单个值,您还可以轻松插入整个向量,例如,复制最后一列:
b = np.insert(a, insert_index, values=a[:,2], axis=1)
这导致:
array([[1, 2, 3, 3],
[2, 3, 4, 4]])
在时间上,insert
可能比JoshAdel的解决方案慢:
In [1]: N = 10
In [2]: a = np.random.rand(N,N)
In [3]: %timeit b = np.hstack((a, np.zeros((a.shape[0], 1))))
100000 loops, best of 3: 7.5 µs per loop
In [4]: %timeit b = np.zeros((a.shape[0], a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 2.17 µs per loop
In [5]: %timeit b = np.insert(a, 3, values=0, axis=1)
100000 loops, best of 3: 10.2 µs per loop
insert(a, -1, ...)
添加该列。猜猜我将代替它。
a.shape[axis]
。即 对于添加行,您可以执行np.insert(a, a.shape[0], 999, axis=0)
;对于列,您可以执行np.insert(a, a.shape[1], 999, axis=1)
。
我对这个问题也很感兴趣,并比较了
numpy.c_[a, a]
numpy.stack([a, a]).T
numpy.vstack([a, a]).T
numpy.ascontiguousarray(numpy.stack([a, a]).T)
numpy.ascontiguousarray(numpy.vstack([a, a]).T)
numpy.column_stack([a, a])
numpy.concatenate([a[:,None], a[:,None]], axis=1)
numpy.concatenate([a[None], a[None]], axis=0).T
所有输入向量都做同样的事情a
。生长时间a
:
请注意,所有非连续变体(特别是 stack
/ vstack
)最终都比所有连续变体快。column_stack
(出于清晰度和速度方面)(如果需要连续性)似乎是一个不错的选择。
复制剧情的代码:
import numpy
import perfplot
perfplot.save(
"out.png",
setup=lambda n: numpy.random.rand(n),
kernels=[
lambda a: numpy.c_[a, a],
lambda a: numpy.ascontiguousarray(numpy.stack([a, a]).T),
lambda a: numpy.ascontiguousarray(numpy.vstack([a, a]).T),
lambda a: numpy.column_stack([a, a]),
lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
lambda a: numpy.ascontiguousarray(
numpy.concatenate([a[None], a[None]], axis=0).T
),
lambda a: numpy.stack([a, a]).T,
lambda a: numpy.vstack([a, a]).T,
lambda a: numpy.concatenate([a[None], a[None]], axis=0).T,
],
labels=[
"c_",
"ascont(stack)",
"ascont(vstack)",
"column_stack",
"concat",
"ascont(concat)",
"stack (non-cont)",
"vstack (non-cont)",
"concat (non-cont)",
],
n_range=[2 ** k for k in range(20)],
xlabel="len(a)",
logx=True,
logy=True,
)
c_
和column_stack
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1))
>>> z
array([[ 0.],
[ 0.]])
>>> np.concatenate((a, z), axis=1)
array([[ 1., 2., 3., 0.],
[ 2., 3., 4., 0.]])
np.concatenate
似乎比np.hstack
2x1、2x2和2x3矩阵快3倍。np.concatenate
在我的实验中,比手动将矩阵复制到一个空矩阵中要快得多。这与NicoSchlömer在下面的回答是一致的。
假设M
一个(100,3)ndarray和y
一个(100,)ndarray append
可以按以下方式使用:
M=numpy.append(M,y[:,None],1)
诀窍是使用
y[:, None]
这将转换y
为(100,1)2D数组。
M.shape
现在给
(100, 4)
我喜欢JoshAdel的答案,因为它专注于性能。性能上的次要改进是避免仅被覆盖的初始化零的开销。当N较大时,使用空而不是零,并且将零列作为单独的步骤写入时,这具有可测量的差异:
In [1]: import numpy as np
In [2]: N = 10000
In [3]: a = np.ones((N,N))
In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
1 loops, best of 3: 492 ms per loop
In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],))
1 loops, best of 3: 407 ms per loop
b[:,-1] = 0
。同样,对于非常大的阵列,性能差异可以np.insert()
忽略不计,np.insert()
由于其简洁性,这可能会更令人希望。
np.insert
也达到目的。
matA = np.array([[1,2,3],
[2,3,4]])
idx = 3
new_col = np.array([0, 0])
np.insert(matA, idx, new_col, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
它沿一个轴new_col
在给定索引之前在此处插入值idx
。换句话说,新插入的值将占据该idx
列并向后移动原始位置idx
。
insert
由于没有提供给定的函数名称,因此该位置不适当(请参见答案中链接的文档)。
Numpy的np.append
方法需要三个参数,前两个是2D numpy数组,第三个是轴参数,指示要沿哪个轴附加:
import numpy as np
x = np.array([[1,2,3], [4,5,6]])
print("Original x:")
print(x)
y = np.array([[1], [1]])
print("Original y:")
print(y)
print("x appended to y on axis of 1:")
print(np.append(x, y, axis=1))
印刷品:
Original x:
[[1 2 3]
[4 5 6]]
Original y:
[[1]
[1]]
x appended to y on axis of 1:
[[1 2 3 1]
[4 5 6 1]]
就我而言,我必须在NumPy数组中添加一列
X = array([ 6.1101, 5.5277, ... ])
X.shape => (97,)
X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)
在X.shape =>(97,2)之后
array([[ 1. , 6.1101],
[ 1. , 5.5277],
...
有专门为此功能。它叫做numpy.pad
a = np.array([[1,2,3], [2,3,4]])
b = np.pad(a, ((0, 0), (0, 1)), mode='constant', constant_values=0)
print b
>>> array([[1, 2, 3, 0],
[2, 3, 4, 0]])
这是它在文档字符串中所说的:
Pads an array.
Parameters
----------
array : array_like of rank N
Input array
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
mode : str or function
One of the following string values or a user supplied function.
'constant'
Pads with a constant value.
'edge'
Pads with the edge values of array.
'linear_ramp'
Pads with the linear ramp between end_value and the
array edge value.
'maximum'
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.
((before, after),) yields same before and after statistic lengths
for each axis.
(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.
Default is ``None``, to use the entire axis.
constant_values : sequence or int, optional
Used in 'constant'. The values to set the padded values for each
axis.
((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for
all axes.
Default is 0.
end_values : sequence or int, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
((before_1, after_1), ... (before_N, after_N)) unique end values
for each axis.
((before, after),) yields same before and after end values for each
axis.
(constant,) or int is a shortcut for before = after = end value for
all axes.
Default is 0.
reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extented part of the array is created by
subtracting the reflected values from two times the edge value.
Returns
-------
pad : ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`.
Notes
-----
.. versionadded:: 1.7.0
For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.
The padding function, if used, should return a rank 1 array equal in
length to the vector argument with padded values replaced. It has the
following signature::
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
where
vector : ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires.
Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])