Python 2.X中的range和xrange函数之间有什么区别?


718

显然,xrange更快,但是我不知道为什么它更快(到目前为止,除了轶事之外,还没有证据表明它更快)或除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

Answers:


816

在Python 2.x中:

  • range创建一个列表,所以如果您这样做range(1, 10000000),则会在内存中创建一个包含9999999元素的列表。

  • xrange 是一个延迟计算的序列对象。

在Python 3中,range它等效于python xrange,并且必须使用来获取列表list(range(...))


65
xrange恰好是一个生成器,但它的求值比较慢,并且像一个生成器。
Vaibhav Mishra'8年

47
xrange(x).__iter__()是一个发电机。
augustomen

34
他们为什么要使xrange而不是使范围变得懒惰?
罗伯·格兰特

22
@RobertGrant,他们做到了。在Python 3中。(由于所有更改都必须向后兼容,因此他们在Python 2.x版本中无法这样做。)
Paul Draper 2015年

12
@Ratul意味着每个i都按需评估,而不是初始化。
Onilol

223

range会创建一个列表,因此,如果执行range(1, 10000000)此操作,则会在内存中创建一个包含9999999元素的列表。

xrange 是一个生成器,所以它是一个序列对象,是一个懒惰求值的对象。

的确如此,但是在Python 3中,.range()将由Python 2实现.xrange()。如果需要实际生成列表,则需要执行以下操作:

list(range(1,100))

3
我不认为这是一个大问题(关于破坏现有应用程序),因为范围主要是用于生成要在for循环中使用的索引,例如“ for i in range(
1,10

10
+1感谢您的回答,有关用xrange替换range 3的信息非常有用。我实际上告诉某人使用xrange代替或range,他们说在python 3中没关系,所以我在Google上搜索了更多信息,然后出现了这个答案:)
Cervo 2012年

调用xrange生成器有什么问题?它是一个包含yield语句的函数,根据术语表,这些函数称为生成器。
冬季之光

@winterlight,认为正确的术语是迭代器。发电机也应该能够接收。
McSinyx

112

记住,使用该timeit模块来测试较小的代码片段更快!

$ python -m timeit 'for i in range(1000000):' ' pass'
10 loops, best of 3: 90.5 msec per loop
$ python -m timeit 'for i in xrange(1000000):' ' pass'
10 loops, best of 3: 51.1 msec per loop

就个人而言,.range()除非我处理的列表非常庞大,否则我总是使用-从时间上可以看出,对于一百万个条目的列表,额外的开销只有0.04秒。正如Corey所指出的那样,在Python 3.0中,它.xrange()将会消失,并且.range()无论如何都会为您提供良好的迭代器行为。


12
+1为timeit示例。注意:要在Windows cmd中运行,需要使用双引号,即“。所以代码将是python -m timeit "for i in xrange(1000000):" " pass"
stalk 2012年

10
xrange的主要好处是内存,而不是时间。
endlith 2014年

3
实际答案为+1: 除非范围很大,否则使用范围。顺便说一句,它们在概念上是相同的,对吗?奇怪的是,没有答案说明了这一点。
鲍勃·斯坦

6
如果xrange更快并且不占用内存,为什么还要使用range?
奥斯汀·莫尔

8
我总体上同意您的说法,但是您的评估是错误的:the extra overhead is only 0.04 seconds查看它的正确方法不是正确的,(90.5-51.1)/51.1 = 1.771 times slower因为它表明,如果这是程序的核心循环,则可能会造成瓶颈。但是,如果这只是一小部分,那么1.77倍并不是很多。
chacham15

65

xrange仅存储范围参数并按需生成数字。但是,Python的C实现当前将其args限制为C long:

xrange(2**32-1, 2**32+1)  # When long is 32 bits, OverflowError: Python int too large to convert to C long
range(2**32-1, 2**32+1)   # OK --> [4294967295L, 4294967296L]

请注意,在Python 3.0中仅存在,range并且其行为类似于2.x,xrange但对最小和最大端点没有限制。


39

xrange返回一个迭代器,一次只在内存中保留一个数字。range将整个数字列表保留在内存中。


9
xrange没有返回一个迭代。
abarnert,2015年

and only keeps one number in memory at a time并在其余的都放在请指导我..
SIslam

5
@SIslam如果知道开始,结束和当前,则可以一次计算下一个。
贾斯汀·迈纳斯

30

一定要花一些时间在图书馆参考上。您越熟悉它,就可以更快地找到此类问题的答案。关于内置对象和类型的前几章特别重要。

xrange类型的优点在于,无论xrange对象代表的范围大小如何,它始终将占用相同的内存量。没有一致的性能优势。

查找有关Python构造的快速信息的另一种方法是docstring和help-function:

print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)

1
该库很好,但是要找到您所遇到问题的答案并不总是那么容易。
Teifion

2
转到库参考,按ctrl + f,搜索范围,您将获得两个结果。寻找这个问题的答案并不需要太多的努力。
David Locke

1
库参考无效。你能更新一下吗?
mk ..

14

我很震惊,没有人读doc

此函数非常类似于range(),但是返回一个xrange对象而不是一个列表。这是一种不透明的序列类型,其产生的值与对应的列表相同,而实际上并没有同时存储它们。xrange()over 的优点range()是最小的(因为xrange()在要求输入值时仍必须创建值),除非在内存不足的计算机上使用了非常大的范围或从未使用过范围的所有元素时(例如当循环被使用时)。通常以break)终止。


13

range创建一个列表,因此如果执行range(1,10000000),它将在内存中创建一个包含10000000个元素的列表。xrange是一个生成器,因此它懒惰地求值。

这为您带来两个优点:

  1. 您可以迭代更长的列表而无需获取MemoryError
  2. 当它懒散地解析每个数字时,如果您尽早停止迭代,您将不会浪费时间创建整个列表。

12

在这个简单的示例中,您将发现xrangeover 的优点range

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 4.49153590202 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 7.04547905922 seconds

上面的示例在的情况下并没有任何实质性的改善xrange

现在range,与相比,以下情况的确非常慢xrange

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 0.000764846801758 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer() 

print "time taken: ", (t2-t1)  # 2.78506207466 seconds

使用range,它已经创建了一个从0到100000000(耗时)的列表,但是它xrange是一个生成器,并且仅根据需要(即,如果继续迭代)生成数字。

在Python-3中,该range功能的实现与xrangePython-2中的相同,而xrange在Python-3中已取消了该功能。

快乐编码!


11

这是出于优化的原因。

range()将从头到尾创建一个值列表(在您的示例中为0 .. 20)。在很大范围内,这将成为昂贵的操作。

另一方面,xrange()更优化了。它只会在需要时(通过xrange序列对象)计算下一个值,并且不会像range()那样创建所有值的列表。


9

range(x,y)如果使用for循环,则返回x和y之间的每个数字的列表,这样range比较慢。实际上,range具有较大的Index范围。range(x.y)将打印出x和y之间所有数字的列表

xrange(x,y)返回,xrange(x,y)但如果使用for循环,则xrange速度更快。xrange索引范围较小。xrange不仅会打印出来xrange(x,y),还会保留其中的所有数字。

[In] range(1,10)
[Out] [1, 2, 3, 4, 5, 6, 7, 8, 9]
[In] xrange(1,10)
[Out] xrange(1,10)

如果使用for循环,那么它将起作用

[In] for i in range(1,10):
        print i
[Out] 1
      2
      3
      4
      5
      6
      7
      8
      9
[In] for i in xrange(1,10):
         print i
[Out] 1
      2
      3
      4
      5
      6
      7
      8
      9

尽管使用循环时并没有什么不同,但仅打印循环时也有差异!


8

range(): range(1,10)返回一个1到10个数字的列表,并将整个列表保存在内存中。

xrange():类似于range(),但不返回列表,而是返回一个对象,该对象根据需要生成范围内的数字。对于循环,这比range()快一点,并且内存效率更高。xrange()对象就像一个迭代器,并根据需要生成数字。(延迟评估)

In [1]: range(1,10)

Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

In [2]: xrange(10)

Out[2]: xrange(10)

In [3]: print xrange.__doc__

xrange([start,] stop[, step]) -> xrange object

6

其他一些答案提到Python 3淘汰了2.x range,并将2.x重命名xrangerange。但是,除非您使用3.0或3.1(应该没有人使用),否则它实际上是一种不同的类型。

正如3.1文档所说:

范围对象几乎没有行为:它们仅支持索引,迭代和len功能。

但是,在3.2+版本中,它range是一个完整序列,它支持扩展的slice,以及所有collections.abc.Sequence与语义相同的方法list*

并且,至少在CPython和PyPy(当前仅有的两个3.2+实现)中,它还具有indexand count方法和in运算符的恒定时间实现(只要您仅将其传递为整数)。这意味着123456 in r在3.2+版本中写作是合理的,而在2.7或3.1版本中这将是一个可怕的想法。


*事实上,issubclass(xrange, collections.Sequence)回报率True在2.6-2.7 3.0-3.1和是一个错误是固定在3.2,而不是向后移植。


6

在python 2.x中

range(x)返回一个列表,该列表在内存中创建有x个元素。

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]

xrange(x)返回一个xrange对象,该对象是生成器obj,可按需生成数字。它们是在for循环(惰性评估)期间计算的。

对于循环,这比range()快一点,并且内存效率更高。

>>> b = xrange(5)
>>> b
xrange(5)

xrange()不是发电机。xrange(n).__ iter __()`是。
th3an0maly

5

在循环中针对xrange测试范围时(我知道我应该使用timeit,但是使用简单的列表理解示例从内存中迅速破解了它),我发现了以下内容:

import time

for x in range(1, 10):

    t = time.time()
    [v*10 for v in range(1, 10000)]
    print "range:  %.4f" % ((time.time()-t)*100)

    t = time.time()
    [v*10 for v in xrange(1, 10000)]
    print "xrange: %.4f" % ((time.time()-t)*100)

这使:

$python range_tests.py
range:  0.4273
xrange: 0.3733
range:  0.3881
xrange: 0.3507
range:  0.3712
xrange: 0.3565
range:  0.4031
xrange: 0.3558
range:  0.3714
xrange: 0.3520
range:  0.3834
xrange: 0.3546
range:  0.3717
xrange: 0.3511
range:  0.3745
xrange: 0.3523
range:  0.3858
xrange: 0.3997 <- garbage collection?

或者,在for循环中使用xrange:

range:  0.4172
xrange: 0.3701
range:  0.3840
xrange: 0.3547
range:  0.3830
xrange: 0.3862 <- garbage collection?
range:  0.4019
xrange: 0.3532
range:  0.3738
xrange: 0.3726
range:  0.3762
xrange: 0.3533
range:  0.3710
xrange: 0.3509
range:  0.3738
xrange: 0.3512
range:  0.3703
xrange: 0.3509

我的代码段测试是否正确?对较慢的xrange实例有何评论?或更好的例子:-)


2
一次运行这样的基准测试并不能提供准确的计时结果。总是有差异的。可能是GC,或者是另一个进程在窃取CPU ...等等。这就是为什么通常以10-100-1000 -...为基准运行基准的原因
Vajk Hermecz

这只是草率的摘要打印输出-我运行了几次,但最多只能运行100次,而且xrange看起来稍快一些,尽管使用Python 3进行比较现在是多余的。
戴夫·埃弗里特

3
timeit是为了什么。它需要运行很多次,禁用GC,使用最好的时钟代替time等等,等等
abarnert 2015年

4

python中的xrange()和range()与用户的工作原理相似,但是区别在于,当我们讨论使用这两个函数分配内存的方式时。

当我们使用range()时,我们为它生成的所有变量分配内存,因此不建议使用更大的no。生成的变量。

另一方面,xrange()一次仅生成一个特定值,并且只能与for循环一起使用以打印所需的所有值。


3

range生成整个列表并返回。xrange不会-它会按需生成列表中的数字。


2

xrange使用迭代器(动态生成值),range返回一个列表。


2

什么?
range在运行时返回静态列表。
xrange返回一个object(在某种情况下,它的作用类似于生成器,尽管肯定不是一个),并在需要时从中生成值。

什么时候使用?

  • xrange如果要生成一个巨大范围(例如10亿)的列表,则可以使用该选项,尤其是当您拥有像手机这样的“内存敏感系统”时。
  • 使用range,如果你想在列表几次迭代。

PS:Python 3.x的range功能== Python 2.x的xrange功能。


xrange不返回生成器对象。
abarnert,2015年

如果我理解正确,那么这就是这里的解释(对于Python 2.x):wiki.python.org/moin/Generators
kmario23

那么维基是错误的。(我不知道是谁的“SH”是谁补充,并签署了评语)的官方文档是正确的; 您可以自己对其进行测试,看看它是生成器还是序列。
abarnert

好。:但它看完这个仍扑朔迷离stackoverflow.com/questions/135041/...
kmario23

1
有趣的问题是当口译员不同意官方文档或其他口译员时该怎么办……但是幸运的是,这种情况并不太常见……
abarnert 2015年

2

每个人都对此做了很大的解释。但我希望自己看到它。我使用python3。因此,我打开了资源监视器(在Windows中!),首先,首先执行以下命令:

a=0
for i in range(1,100000):
    a=a+i

然后检查“使用中”内存中的更改。这无关紧要。然后,我运行了以下代码:

for i in list(range(1,100000)):
    a=a+i

立即消耗了很大一部分内存。而且,我被说服了。您可以自己尝试。

如果您使用的是Python 2X,则在第一个代码中将“ range()”替换为“ xrange()”,将“ list(range())”替换为“ range()”。


2

从帮助文档。

Python 2.7.12

>>> print range.__doc__
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3].  The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

>>> print xrange.__doc__
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object

Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand.  For looping, this is 
slightly faster than range() and more memory efficient.

Python 3.5.2

>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step.  range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted!  range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).

>>> print(xrange.__doc__)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'xrange' is not defined

差异显而易见。在Python 2.x中,range返回一个列表,xrange返回一个可迭代的xrange对象。

在Python 3.x中,range成为xrangePython 2.x并被xrange删除。


1

根据扫描/打印0-N个项目的要求,range和xrange的工作方式如下。

range()-在内存中创建一个新列表,并将整个0到N个项目(总共N + 1个)打印出来。xrange()-创建一个迭代器实例,该实例扫描项目并仅将当前遇到的项目保留在内存中,因此始终使用相同数量的内存。

如果所需元素只是在列表的开头,那么它可以节省大量时间和内存。


1
xrange不创建迭代器实例。它创建一个xrange可迭代的对象,但不是一个迭代器,几乎(但不是完全)一个序列,如列表。
abarnert 2015年

1

Range返回一个列表,xrange返回一个xrange对象,无论范围大小如何,该对象都占用相同的内存,因为在这种情况下,每次迭代仅生成一个元素并且可用,而在使用range的情况下,所有元素一次生成,并且在内存中可用。


1

对于较小的参数差减小range(..)/ xrange(..)

$ python -m timeit "for i in xrange(10111):" " for k in range(100):" "  pass"
10 loops, best of 3: 59.4 msec per loop

$ python -m timeit "for i in xrange(10111):" " for k in xrange(100):" "  pass"
10 loops, best of 3: 46.9 msec per loop

在这种情况下,xrange(100)效率仅提高约20%。


1

range:-range会立即填充所有内容,这意味着范围的每个数字都会占用内存。

xrange:-xrange类似于生成器,当您想要数字的范围但不希望将它们存储时(例如当您要在for loop.so中使用时),它将出现在图片中,这样可以提高内存效率。


1

此外,如果这样做list(xrange(...))等同于range(...)

所以 list很慢。

xrange真的没有完全完成序列

这就是为什么它不是列表,而是xrange对象


1

range() 在Python中 2.x

此函数本质range()上是Python中可用的旧函数,它2.x返回list包含指定范围内的元素的对象的实例。

但是,这种实现在初始化带有一系列数字的列表时效率太低。例如,for i in range(1000000)就内存和时间使用而言,要执行的命令非常昂贵,因为它需要将此列表存储到内存中。


range()在Python 3.xxrange()Python中2.x

Python 3.x引入了更新的实现range()(而更新的实现已经可以2.x通过Python 通过xrange()功能)。

range()漏洞利用一种称为惰性评估的策略较新的实现未在范围内创建大量元素,而是引入了class range,这是一个轻量级的对象,代表给定范围内的所需元素,而无需将其显式存储在内存中(这听起来像是生成器,但是惰性求值的概念是不同)。


例如,请考虑以下内容:

# Python 2.x
>>> a = range(10)
>>> type(a)
<type 'list'>
>>> b = xrange(10)
>>> type(b)
<type 'xrange'>

# Python 3.x
>>> a = range(10)
>>> type(a)
<class 'range'>

-2

看到这个帖子以查找range和xrange之间的区别:

报价:

range返回确切的结果:一系列连续的整数,定义的长度以0开头xrange。但是,将返回“ xrange object”,其作用类似于迭代器


2
我知道这已经5岁了,但是该帖子几乎对所有内容都是错误的。xrange不是迭代器。返回的列表range确实支持迭代(列表几乎是可迭代的典型示例)。的整体利益xrange不是“最小的”。等等。
abarnert,2015年
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.