假设我们有0.33
,我们需要输出1/3
。
如果有0.4
,我们需要输出2/5
。
这样做的想法是使其易于阅读,以使用户理解y中的 “ x个部分 ”,从而更好地理解数据。
我知道百分比是一个很好的替代品,但我想知道是否有一种简单的方法可以做到这一点?
假设我们有0.33
,我们需要输出1/3
。
如果有0.4
,我们需要输出2/5
。
这样做的想法是使其易于阅读,以使用户理解y中的 “ x个部分 ”,从而更好地理解数据。
我知道百分比是一个很好的替代品,但我想知道是否有一种简单的方法可以做到这一点?
Answers:
我发现David Eppstein 对给定的实数 C代码的有理近似值正是您所要的。它基于连续分数理论,并且非常快速且相当紧凑。
我使用了针对特定分子和分母限制定制的版本。
/*
** find rational approximation to given real number
** David Eppstein / UC Irvine / 8 Aug 1993
**
** With corrections from Arno Formella, May 2008
**
** usage: a.out r d
** r is real number to approx
** d is the maximum denominator allowed
**
** based on the theory of continued fractions
** if x = a1 + 1/(a2 + 1/(a3 + 1/(a4 + ...)))
** then best approximation is found by truncating this series
** (with some adjustments in the last term).
**
** Note the fraction can be recovered as the first column of the matrix
** ( a1 1 ) ( a2 1 ) ( a3 1 ) ...
** ( 1 0 ) ( 1 0 ) ( 1 0 )
** Instead of keeping the sequence of continued fraction terms,
** we just keep the last partial product of these matrices.
*/
#include <stdio.h>
main(ac, av)
int ac;
char ** av;
{
double atof();
int atoi();
void exit();
long m[2][2];
double x, startx;
long maxden;
long ai;
/* read command line arguments */
if (ac != 3) {
fprintf(stderr, "usage: %s r d\n",av[0]); // AF: argument missing
exit(1);
}
startx = x = atof(av[1]);
maxden = atoi(av[2]);
/* initialize matrix */
m[0][0] = m[1][1] = 1;
m[0][1] = m[1][0] = 0;
/* loop finding terms until denom gets too big */
while (m[1][0] * ( ai = (long)x ) + m[1][1] <= maxden) {
long t;
t = m[0][0] * ai + m[0][1];
m[0][1] = m[0][0];
m[0][0] = t;
t = m[1][0] * ai + m[1][1];
m[1][1] = m[1][0];
m[1][0] = t;
if(x==(double)ai) break; // AF: division by zero
x = 1/(x - (double) ai);
if(x>(double)0x7FFFFFFF) break; // AF: representation failure
}
/* now remaining x is between 0 and 1/ai */
/* approx as either 0 or 1/m where m is max that will fit in maxden */
/* first try zero */
printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
startx - ((double) m[0][0] / (double) m[1][0]));
/* now try other possibility */
ai = (maxden - m[1][1]) / m[1][0];
m[0][0] = m[0][0] * ai + m[0][1];
m[1][0] = m[1][0] * ai + m[1][1];
printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
startx - ((double) m[0][0] / (double) m[1][0]));
}
从Python 2.6开始, fractions
模块。
(引自文档。)
>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)
language agnostic
和algorithm
标签?
如果输出是为了使读者快速了解结果的顺序,则返回“ 113/211”之类的内容是没有意义的,因此输出应将自身限制为使用一位数字(可能是1 / 10和9/10)。如果是这样,您可以观察到只有27个不同的分数。
由于生成输出的基础数学永远不会改变,因此解决方案可以是简单地对二进制搜索树进行硬编码,以便该函数最多执行log(27)〜= 4 3/4比较。这是经过测试的C版本代码
char *userTextForDouble(double d, char *rval)
{
if (d == 0.0)
return "0";
// TODO: negative numbers:if (d < 0.0)...
if (d >= 1.0)
sprintf(rval, "%.0f ", floor(d));
d = d-floor(d); // now only the fractional part is left
if (d == 0.0)
return rval;
if( d < 0.47 )
{
if( d < 0.25 )
{
if( d < 0.16 )
{
if( d < 0.12 ) // Note: fixed from .13
{
if( d < 0.11 )
strcat(rval, "1/10"); // .1
else
strcat(rval, "1/9"); // .1111....
}
else // d >= .12
{
if( d < 0.14 )
strcat(rval, "1/8"); // .125
else
strcat(rval, "1/7"); // .1428...
}
}
else // d >= .16
{
if( d < 0.19 )
{
strcat(rval, "1/6"); // .1666...
}
else // d > .19
{
if( d < 0.22 )
strcat(rval, "1/5"); // .2
else
strcat(rval, "2/9"); // .2222...
}
}
}
else // d >= .25
{
if( d < 0.37 ) // Note: fixed from .38
{
if( d < 0.28 ) // Note: fixed from .29
{
strcat(rval, "1/4"); // .25
}
else // d >=.28
{
if( d < 0.31 )
strcat(rval, "2/7"); // .2857...
else
strcat(rval, "1/3"); // .3333...
}
}
else // d >= .37
{
if( d < 0.42 ) // Note: fixed from .43
{
if( d < 0.40 )
strcat(rval, "3/8"); // .375
else
strcat(rval, "2/5"); // .4
}
else // d >= .42
{
if( d < 0.44 )
strcat(rval, "3/7"); // .4285...
else
strcat(rval, "4/9"); // .4444...
}
}
}
}
else
{
if( d < 0.71 )
{
if( d < 0.60 )
{
if( d < 0.55 ) // Note: fixed from .56
{
strcat(rval, "1/2"); // .5
}
else // d >= .55
{
if( d < 0.57 )
strcat(rval, "5/9"); // .5555...
else
strcat(rval, "4/7"); // .5714
}
}
else // d >= .6
{
if( d < 0.62 ) // Note: Fixed from .63
{
strcat(rval, "3/5"); // .6
}
else // d >= .62
{
if( d < 0.66 )
strcat(rval, "5/8"); // .625
else
strcat(rval, "2/3"); // .6666...
}
}
}
else
{
if( d < 0.80 )
{
if( d < 0.74 )
{
strcat(rval, "5/7"); // .7142...
}
else // d >= .74
{
if(d < 0.77 ) // Note: fixed from .78
strcat(rval, "3/4"); // .75
else
strcat(rval, "7/9"); // .7777...
}
}
else // d >= .8
{
if( d < 0.85 ) // Note: fixed from .86
{
if( d < 0.83 )
strcat(rval, "4/5"); // .8
else
strcat(rval, "5/6"); // .8333...
}
else // d >= .85
{
if( d < 0.87 ) // Note: fixed from .88
{
strcat(rval, "6/7"); // .8571
}
else // d >= .87
{
if( d < 0.88 ) // Note: fixed from .89
{
strcat(rval, "7/8"); // .875
}
else // d >= .88
{
if( d < 0.90 )
strcat(rval, "8/9"); // .8888...
else
strcat(rval, "9/10"); // .9
}
}
}
}
}
}
return rval;
}
1/1000
也是人类可读的,但是上面的算法只会产生非常粗略的1/10
近似值。我认为,可以改进而言其力所能及可读的分母可以从挑选制成,和/或增加<
,>
,<<
,>>
前缀给近似的粗糙的想法。
以下是一个链接,解释了将小数转换为分数的数学原理:
http://www.webmath.com/dec2fract.html
这是一个示例函数,说明如何使用VB实际执行此操作(来自www.freevbcode.com/ShowCode.asp?ID=582):
Public Function Dec2Frac(ByVal f As Double) As String
Dim df As Double
Dim lUpperPart As Long
Dim lLowerPart As Long
lUpperPart = 1
lLowerPart = 1
df = lUpperPart / lLowerPart
While (df <> f)
If (df < f) Then
lUpperPart = lUpperPart + 1
Else
lLowerPart = lLowerPart + 1
lUpperPart = f * lLowerPart
End If
df = lUpperPart / lLowerPart
Wend
Dec2Frac = CStr(lUpperPart) & "/" & CStr(lLowerPart)
End Function
(从谷歌搜索:将十进制转换为分数,将十进制转换为分数代码)
您可能想阅读每位计算机科学家应该了解的有关浮点算法的知识。
您必须通过乘以大数来指定一些精度:
3.141592 * 1000000 = 3141592
那么你可以做一个分数:
3 + (141592 / 1000000)
并通过GCD减少...
3 + (17699 / 125000)
但是无法消除预期的分数。您可能希望始终在整个代码中使用分数-记住要尽量减少分数,以免发生溢出!
这是devinmoore建议的VB代码的Perl和Javascript版本:
Perl:
sub dec2frac {
my $d = shift;
my $df = 1;
my $top = 1;
my $bot = 1;
while ($df != $d) {
if ($df < $d) {
$top += 1;
}
else {
$bot += 1;
$top = int($d * $bot);
}
$df = $top / $bot;
}
return "$top/$bot";
}
和几乎相同的javascript:
function dec2frac(d) {
var df = 1;
var top = 1;
var bot = 1;
while (df != d) {
if (df < d) {
top += 1;
}
else {
bot += 1;
top = parseInt(d * bot);
}
df = top / bot;
}
return top + '/' + bot;
}
AC#实施
/// <summary>
/// Represents a rational number
/// </summary>
public struct Fraction
{
public int Numerator;
public int Denominator;
/// <summary>
/// Constructor
/// </summary>
public Fraction(int numerator, int denominator)
{
this.Numerator = numerator;
this.Denominator = denominator;
}
/// <summary>
/// Approximates a fraction from the provided double
/// </summary>
public static Fraction Parse(double d)
{
return ApproximateFraction(d);
}
/// <summary>
/// Returns this fraction expressed as a double, rounded to the specified number of decimal places.
/// Returns double.NaN if denominator is zero
/// </summary>
public double ToDouble(int decimalPlaces)
{
if (this.Denominator == 0)
return double.NaN;
return System.Math.Round(
Numerator / (double)Denominator,
decimalPlaces
);
}
/// <summary>
/// Approximates the provided value to a fraction.
/// http://stackoverflow.com/questions/95727/how-to-convert-floats-to-human-readable-fractions
/// </summary>
private static Fraction ApproximateFraction(double value)
{
const double EPSILON = .000001d;
int n = 1; // numerator
int d = 1; // denominator
double fraction = n / d;
while (System.Math.Abs(fraction - value) > EPSILON)
{
if (fraction < value)
{
n++;
}
else
{
d++;
n = (int)System.Math.Round(value * d);
}
fraction = n / (double)d;
}
return new Fraction(n, d);
}
}
斯特恩·布罗科特树(Stern-Brocot Tree)引出了一种相当自然的方法,可以用简单的分母将分数近似为实数。
问题的一部分在于,实际上并不容易将这么多的分数解释为分数。例如0.33不是1/3,而是33/100。但是,如果您还记得上小学的培训,那么就有一个将十进制值转换为分数的过程,但是,由于大多数时候十进制数字不是存储在0.33中,而是存储在0.329999999999998或类似的数字中,因此不太可能提供所需的内容。
帮自己一个忙,不要打扰,但是如果需要,可以执行以下操作:
将原始值乘以10,直到除去小数部分。保留该数字,并将其用作除数。然后通过寻找共同的分母来进行一系列的简化。
所以0.4将是4/10。然后,您将寻找以低值(可能是质数)开头的常见除数。从2开始,通过检查除法底数是否与除法本身相同,可以看到2是否将分子和分母均分。
floor(5/2) = 2
5/2 = 2.5
因此5不能平均分配2。因此,然后检查下一个数字,例如3。执行此操作,直到达到或小于较小数字的平方根为止。
完成之后,您需要
这不是一个“算法”,而是一个Python解决方案:http : //docs.python.org/library/fractions.html
>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
我认为最好的方法是先将float值转换为ascii表示形式。在C ++中,可以使用ostringstream,在C中,可以使用sprintf。这是在C ++中的外观:
ostringstream oss;
float num;
cin >> num;
oss << num;
string numStr = oss.str();
int i = numStr.length(), pow_ten = 0;
while (i > 0) {
if (numStr[i] == '.')
break;
pow_ten++;
i--;
}
for (int j = 1; j < pow_ten; j++) {
num *= 10.0;
}
cout << static_cast<int>(num) << "/" << pow(10, pow_ten - 1) << endl;
在直线C中可以采用类似的方法。
之后,您需要检查分数是否处于最低水平。该算法将给出精确的答案,即0.33将输出“ 33/100”,而不是“ 1/3”。但是,0.4表示“ 4/10”,当减至最低时为“ 2/5”。这可能不像EppStein的解决方案那么强大,但是我相信这更简单。
R中的内置解决方案:
library(MASS)
fractions(0.666666666)
## [1] 2/3
这使用连续分数法,并具有用于调整精度的可选参数cycles
和max.denominator
参数。
library(numbers)
和contFrac(0.6666)
; 以获得所需的字符串输出:paste(contFrac(0.666, tol=1e-03)$rat, collapse="/")
假设我们有0.33,我们需要输出“ 1/3”。如果我们有“ 0.4”,我们需要输出“ 2/5”。
由于1/3 = 0.3333333 = 0,这在通常情况下是错误的。(3)此外,无法从上述建议中找出解决方案,即十进制可以以定义的精度转换为分数,因为输出始终为分数。
但是,我基于无限几何级数的想法,特别是基于公式,建议我使用多种功能的综合功能:
首先,此函数试图查找字符串表示形式中的分数周期。之后,应用上述公式。
有理数代码是从C#中的Stephen M. McKamey有理数实现中借用的。我希望将我的代码移植到其他语言上不是很困难。
/// <summary>
/// Convert decimal to fraction
/// </summary>
/// <param name="value">decimal value to convert</param>
/// <param name="result">result fraction if conversation is succsess</param>
/// <param name="decimalPlaces">precision of considereation frac part of value</param>
/// <param name="trimZeroes">trim zeroes on the right part of the value or not</param>
/// <param name="minPeriodRepeat">minimum period repeating</param>
/// <param name="digitsForReal">precision for determination value to real if period has not been founded</param>
/// <returns></returns>
public static bool FromDecimal(decimal value, out Rational<T> result,
int decimalPlaces = 28, bool trimZeroes = false, decimal minPeriodRepeat = 2, int digitsForReal = 9)
{
var valueStr = value.ToString("0.0000000000000000000000000000", CultureInfo.InvariantCulture);
var strs = valueStr.Split('.');
long intPart = long.Parse(strs[0]);
string fracPartTrimEnd = strs[1].TrimEnd(new char[] { '0' });
string fracPart;
if (trimZeroes)
{
fracPart = fracPartTrimEnd;
decimalPlaces = Math.Min(decimalPlaces, fracPart.Length);
}
else
fracPart = strs[1];
result = new Rational<T>();
try
{
string periodPart;
bool periodFound = false;
int i;
for (i = 0; i < fracPart.Length; i++)
{
if (fracPart[i] == '0' && i != 0)
continue;
for (int j = i + 1; j < fracPart.Length; j++)
{
periodPart = fracPart.Substring(i, j - i);
periodFound = true;
decimal periodRepeat = 1;
decimal periodStep = 1.0m / periodPart.Length;
var upperBound = Math.Min(fracPart.Length, decimalPlaces);
int k;
for (k = i + periodPart.Length; k < upperBound; k += 1)
{
if (periodPart[(k - i) % periodPart.Length] != fracPart[k])
{
periodFound = false;
break;
}
periodRepeat += periodStep;
}
if (!periodFound && upperBound - k <= periodPart.Length && periodPart[(upperBound - i) % periodPart.Length] > '5')
{
var ind = (k - i) % periodPart.Length;
var regroupedPeriod = (periodPart.Substring(ind) + periodPart.Remove(ind)).Substring(0, upperBound - k);
ulong periodTailPlusOne = ulong.Parse(regroupedPeriod) + 1;
ulong fracTail = ulong.Parse(fracPart.Substring(k, regroupedPeriod.Length));
if (periodTailPlusOne == fracTail)
periodFound = true;
}
if (periodFound && periodRepeat >= minPeriodRepeat)
{
result = FromDecimal(strs[0], fracPart.Substring(0, i), periodPart);
break;
}
else
periodFound = false;
}
if (periodFound)
break;
}
if (!periodFound)
{
if (fracPartTrimEnd.Length >= digitsForReal)
return false;
else
{
result = new Rational<T>(long.Parse(strs[0]), 1, false);
if (fracPartTrimEnd.Length != 0)
result = new Rational<T>(ulong.Parse(fracPartTrimEnd), TenInPower(fracPartTrimEnd.Length));
return true;
}
}
return true;
}
catch
{
return false;
}
}
public static Rational<T> FromDecimal(string intPart, string fracPart, string periodPart)
{
Rational<T> firstFracPart;
if (fracPart != null && fracPart.Length != 0)
{
ulong denominator = TenInPower(fracPart.Length);
firstFracPart = new Rational<T>(ulong.Parse(fracPart), denominator);
}
else
firstFracPart = new Rational<T>(0, 1, false);
Rational<T> secondFracPart;
if (periodPart != null && periodPart.Length != 0)
secondFracPart =
new Rational<T>(ulong.Parse(periodPart), TenInPower(fracPart.Length)) *
new Rational<T>(1, Nines((ulong)periodPart.Length), false);
else
secondFracPart = new Rational<T>(0, 1, false);
var result = firstFracPart + secondFracPart;
if (intPart != null && intPart.Length != 0)
{
long intPartLong = long.Parse(intPart);
result = new Rational<T>(intPartLong, 1, false) + (intPartLong == 0 ? 1 : Math.Sign(intPartLong)) * result;
}
return result;
}
private static ulong TenInPower(int power)
{
ulong result = 1;
for (int l = 0; l < power; l++)
result *= 10;
return result;
}
private static decimal TenInNegPower(int power)
{
decimal result = 1;
for (int l = 0; l > power; l--)
result /= 10.0m;
return result;
}
private static ulong Nines(ulong power)
{
ulong result = 9;
if (power >= 0)
for (ulong l = 0; l < power - 1; l++)
result = result * 10 + 9;
return result;
}
有一些用法的示例:
Rational<long>.FromDecimal(0.33333333m, out r, 8, false);
// then r == 1 / 3;
Rational<long>.FromDecimal(0.33333333m, out r, 9, false);
// then r == 33333333 / 100000000;
您的右半零零件修整案例:
Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 1 / 3;
Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 33 / 100;
最小周期演示:
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.5m));
// then r == 1234 / 9999;
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.6m));
// then r == 123412 / 1000000; because of minimu repeating of period is 0.1234123 in this case.
最后四舍五入:
Rational<long>.FromDecimal(0.8888888888888888888888888889m, out r));
// then r == 8 == 9;
最有趣的情况:
Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 9);
// then r == 12345678 / 100000000;
Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 8);
// Conversation failed, because of period has not been founded and there are too many digits in fraction part of input value.
Rational<long>.FromDecimal(0.12121212121212121m, out r, 28, true, 2, 9));
// then r == 4 / 33; Despite of too many digits in input value, period has been founded. Thus it's possible to convert value to fraction.
每个人都可以在github上我的MathFunctions库中找到其他测试和代码。
在C ++中回答,假设您有一个'BigInt'类,该类可以存储大小不受限制的整数。
您可以改用“ unsigned long long”,但仅适用于某些值。
void GetRational(double val)
{
if (val == val+1) // Inf
throw "Infinite Value";
if (val != val) // NaN
throw "Undefined Value";
bool sign = false;
BigInt enumerator = 0;
BigInt denominator = 1;
if (val < 0)
{
val = -val;
sign = true;
}
while (val > 0)
{
unsigned int intVal = (unsigned int)val;
val -= intVal;
enumerator += intVal;
val *= 2;
enumerator *= 2;
denominator *= 2;
}
BigInt gcd = GCD(enumerator,denominator);
enumerator /= gcd;
denominator /= gcd;
Print(sign? "-":"+");
Print(enumerator);
Print("/");
Print(denominator);
// Or simply return {sign,enumerator,denominator} as you wish
}
顺便说一句,GetRational(0.0)将返回“ +0/1”,因此您可能想单独处理这种情况。
PS:几年来,我一直在自己的“ RationalNum”类中使用此代码,并且已经过全面测试。
while
循环的“收敛”周期受的大小限制double
,通常为64位。因此,它不依赖于输入(val
)的初始值。GCD
但是,该功能确实取决于此值,尽管它通常会很快收敛到解决方案。您是否可能没有正确实现此功能?
unsigned long long
而不是BigInt
,那么它不一定会为每个输入值产生正确的结果...但是即使在这种情况下,代码也不会应该“陷入一个很长的循环”。
GCD
。您是否检查过代码在while
循环中或循环后是否运行了很长时间?我将检查1.33333的值,以了解其背后的原因。谢谢。
伊恩·理查兹(Ian Richards) / 约翰·肯尼迪(John Kennedy)的这种算法不仅返回了很好的分数,而且在速度方面也表现出色。这是我从此答案中获取的C#代码。
它可以处理double
除特殊值(如NaN和+/-无穷大)之外的所有值,如果需要,您必须添加这些值。
它返回一个new Fraction(numerator, denominator)
。用您自己的类型替换。
有关更多示例值以及与其他算法的比较,请转到此处
public Fraction RealToFraction(double value, double accuracy)
{
if (accuracy <= 0.0 || accuracy >= 1.0)
{
throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
}
int sign = Math.Sign(value);
if (sign == -1)
{
value = Math.Abs(value);
}
// Accuracy is the maximum relative error; convert to absolute maxError
double maxError = sign == 0 ? accuracy : value * accuracy;
int n = (int) Math.Floor(value);
value -= n;
if (value < maxError)
{
return new Fraction(sign * n, 1);
}
if (1 - maxError < value)
{
return new Fraction(sign * (n + 1), 1);
}
double z = value;
int previousDenominator = 0;
int denominator = 1;
int numerator;
do
{
z = 1.0 / (z - (int) z);
int temp = denominator;
denominator = denominator * (int) z + previousDenominator;
previousDenominator = temp;
numerator = Convert.ToInt32(value * denominator);
}
while (Math.Abs(value - (double) numerator / denominator) > maxError && z != (int) z);
return new Fraction((n * denominator + numerator) * sign, denominator);
}
此算法返回的示例值:
Accuracy: 1.0E-3 | Richards
Input | Result Error
======================| =============================
3 | 3/1 0
0.999999 | 1/1 1.0E-6
1.000001 | 1/1 -1.0E-6
0.50 (1/2) | 1/2 0
0.33... (1/3) | 1/3 0
0.67... (2/3) | 2/3 0
0.25 (1/4) | 1/4 0
0.11... (1/9) | 1/9 0
0.09... (1/11) | 1/11 0
0.62... (307/499) | 8/13 2.5E-4
0.14... (33/229) | 16/111 2.7E-4
0.05... (33/683) | 10/207 -1.5E-4
0.18... (100/541) | 17/92 -3.3E-4
0.06... (33/541) | 5/82 -3.7E-4
0.1 | 1/10 0
0.2 | 1/5 0
0.3 | 3/10 0
0.4 | 2/5 0
0.5 | 1/2 0
0.6 | 3/5 0
0.7 | 7/10 0
0.8 | 4/5 0
0.9 | 9/10 0
0.01 | 1/100 0
0.001 | 1/1000 0
0.0001 | 1/10000 0
0.33333333333 | 1/3 1.0E-11
0.333 | 333/1000 0
0.7777 | 7/9 1.0E-4
0.11 | 10/91 -1.0E-3
0.1111 | 1/9 1.0E-4
3.14 | 22/7 9.1E-4
3.14... (pi) | 22/7 4.0E-4
2.72... (e) | 87/32 1.7E-4
0.7454545454545 | 38/51 -4.8E-4
0.01024801004 | 2/195 8.2E-4
0.99011 | 100/101 -1.1E-5
0.26... (5/19) | 5/19 0
0.61... (37/61) | 17/28 9.7E-4
|
Accuracy: 1.0E-4 | Richards
Input | Result Error
======================| =============================
0.62... (307/499) | 299/486 -6.7E-6
0.05... (33/683) | 23/476 6.4E-5
0.06... (33/541) | 33/541 0
1E-05 | 1/99999 1.0E-5
0.7777 | 1109/1426 -1.8E-7
3.14... (pi) | 333/106 -2.6E-5
2.72... (e) | 193/71 1.0E-5
0.61... (37/61) | 37/61 0
完成以上代码并将其转换为as3
public static function toFrac(f:Number) : String
{
if (f>1)
{
var parte1:int;
var parte2:Number;
var resultado:String;
var loc:int = String(f).indexOf(".");
parte2 = Number(String(f).slice(loc, String(f).length));
parte1 = int(String(f).slice(0,loc));
resultado = toFrac(parte2);
parte1 *= int(resultado.slice(resultado.indexOf("/") + 1, resultado.length)) + int(resultado.slice(0, resultado.indexOf("/")));
resultado = String(parte1) + resultado.slice(resultado.indexOf("/"), resultado.length)
return resultado;
}
if( f < 0.47 )
if( f < 0.25 )
if( f < 0.16 )
if( f < 0.13 )
if( f < 0.11 )
return "1/10";
else
return "1/9";
else
if( f < 0.14 )
return "1/8";
else
return "1/7";
else
if( f < 0.19 )
return "1/6";
else
if( f < 0.22 )
return "1/5";
else
return "2/9";
else
if( f < 0.38 )
if( f < 0.29 )
return "1/4";
else
if( f < 0.31 )
return "2/7";
else
return "1/3";
else
if( f < 0.43 )
if( f < 0.40 )
return "3/8";
else
return "2/5";
else
if( f < 0.44 )
return "3/7";
else
return "4/9";
else
if( f < 0.71 )
if( f < 0.60 )
if( f < 0.56 )
return "1/2";
else
if( f < 0.57 )
return "5/9";
else
return "4/7";
else
if( f < 0.63 )
return "3/5";
else
if( f < 0.66 )
return "5/8";
else
return "2/3";
else
if( f < 0.80 )
if( f < 0.74 )
return "5/7";
else
if(f < 0.78 )
return "3/4";
else
return "7/9";
else
if( f < 0.86 )
if( f < 0.83 )
return "4/5";
else
return "5/6";
else
if( f < 0.88 )
return "6/7";
else
if( f < 0.89 )
return "7/8";
else
if( f < 0.90 )
return "8/9";
else
return "9/10";
}
这是使用蛮力方法的javascript快速且肮脏的实现。根本没有优化,它可以在预定义的分数范围内运行:http : //jsfiddle.net/PdL23/1/
/* This should convert any decimals to a simplified fraction within the range specified by the two for loops. Haven't done any thorough testing, but it seems to work fine.
I have set the bounds for numerator and denominator to 20, 20... but you can increase this if you want in the two for loops.
Disclaimer: Its not at all optimized. (Feel free to create an improved version.)
*/
decimalToSimplifiedFraction = function(n) {
for(num = 1; num < 20; num++) { // "num" is the potential numerator
for(den = 1; den < 20; den++) { // "den" is the potential denominator
var multiplyByInverse = (n * den ) / num;
var roundingError = Math.round(multiplyByInverse) - multiplyByInverse;
// Checking if we have found the inverse of the number,
if((Math.round(multiplyByInverse) == 1) && (Math.abs(roundingError) < 0.01)) {
return num + "/" + den;
}
}
}
};
//Put in your test number here.
var floatNumber = 2.56;
alert(floatNumber + " = " + decimalToSimplifiedFraction(floatNumber));
这是受JPS使用的方法的启发。
这是红宝石的实现http://github.com/valodzka/frac
Math.frac(0.2, 100) # => (1/5)
Math.frac(0.33, 10) # => (1/3)
Math.frac(0.33, 100) # => (33/100)
我遇到了一个利用变形的特别优雅的Haskell解决方案。这取决于递归方案包。
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleContexts #-}
import Control.Applicative (liftA2)
import Control.Monad (ap)
import Data.Functor.Foldable
import Data.Ratio (Ratio, (%))
isInteger :: (RealFrac a) => a -> Bool
isInteger = ((==) <*>) (realToFrac . floor)
continuedFraction :: (RealFrac a) => a -> [Int]
continuedFraction = liftA2 (:) floor (ana coalgebra)
where coalgebra x
| isInteger x = Nil
| otherwise = Cons (floor alpha) alpha
where alpha = 1 / (x - realToFrac (floor x))
collapseFraction :: (Integral a) => [Int] -> Ratio a
collapseFraction [x] = fromIntegral x % 1
collapseFraction (x:xs) = (fromIntegral x % 1) + 1 / collapseFraction xs
-- | Use the nth convergent to approximate x
approximate :: (RealFrac a, Integral b) => a -> Int -> Ratio b
approximate x n = collapseFraction $ take n (continuedFraction x)
如果您在ghci中进行尝试,它确实可以工作!
λ:> approximate pi 2
22 % 7
.33
=>"1/3"
示例关注我; 我希望.33
=>"33/100"
。我想当然是您的意思.33...
,但这暴露了一个问题—在确定算法之前,我们需要确定预期的行为。@Debilski的Python答案使用.limit_denominator()
默认值,最大分母为10 ^ 7;可能是一个很好的默认在实践中,但仍可以引入错误,如果你不小心,不返回"33/100"
的.33
情况。