如何在Python列表中找到重复项并创建另一个重复项列表?该列表仅包含整数。
如何在Python列表中找到重复项并创建另一个重复项列表?该列表仅包含整数。
Answers:
要删除重复项,请使用set(a)
。要打印副本,类似:
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print([item for item, count in collections.Counter(a).items() if count > 1])
## [1, 2, 5]
请注意,这Counter
并不是特别有效(计时),并且在这里可能会过大。set
会表现更好。此代码按源顺序计算唯一元素的列表:
seen = set()
uniq = []
for x in a:
if x not in seen:
uniq.append(x)
seen.add(x)
或者,更简洁地说:
seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]
我不建议您使用后者,因为not seen.add(x)
这样做并不明显(set add()
方法总是返回None
,因此需要not
)。
要计算没有库的重复元素列表:
seen = {}
dupes = []
for x in a:
if x not in seen:
seen[x] = 1
else:
if seen[x] == 1:
dupes.append(x)
seen[x] += 1
如果列表元素不可散列,则不能使用集合/字典,而必须求助于二次时间解(将每个解比较)。例如:
a = [[1], [2], [3], [1], [5], [3]]
no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]
dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]
O(n)
,因为它只对列表进行一次迭代,并且对set进行查找O(1)
。
dup = []
else: dup.append(x)
print()
seen = set()
然后dupe = set(x for x in a if x in seen or seen.add(x))
>>> l = [1,2,3,4,4,5,5,6,1]
>>> set([x for x in l if l.count(x) > 1])
set([1, 4, 5])
l
用set(l)
既降低了最坏情况下的时间复杂度,因此也没有解决这个答案的较大规模效率的担忧。毕竟这可能不是那么简单。简而言之,不要这样做。
您不需要计数,只需要查看之前是否曾查看过该项目即可。改编这个问题的答案,这一问题:
def list_duplicates(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]
以防万一速度很重要,以下是一些时间安排:
# file: test.py
import collections
def thg435(l):
return [x for x, y in collections.Counter(l).items() if y > 1]
def moooeeeep(l):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in l if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def RiteshKumar(l):
return list(set([x for x in l if l.count(x) > 1]))
def JohnLaRooy(L):
seen = set()
seen2 = set()
seen_add = seen.add
seen2_add = seen2.add
for item in L:
if item in seen:
seen2_add(item)
else:
seen_add(item)
return list(seen2)
l = [1,2,3,2,1,5,6,5,5,5]*100
结果如下:(做得很好@JohnLaRooy!)
$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop
有趣的是,除了计时本身之外,使用pypy时排名也略有变化。最有趣的是,基于计数器的方法从pypy的优化中受益匪浅,而我建议的方法缓存方法似乎几乎没有效果。
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop
显然,这种影响与输入数据的“重复性”有关。我已经设置l = [random.randrange(1000000) for i in xrange(10000)]
并得到以下结果:
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop
add
每次需要插入时,您都需要查找(字典查询)成员函数。
pypy
它是否方便并且正在提高速度。
您可以使用iteration_utilities.duplicates
:
>>> from iteration_utilities import duplicates
>>> list(duplicates([1,1,2,1,2,3,4,2]))
[1, 1, 2, 2]
或者,如果您只希望每个重复项之一,可以将其与iteration_utilities.unique_everseen
:
>>> from iteration_utilities import unique_everseen
>>> list(unique_everseen(duplicates([1,1,2,1,2,3,4,2])))
[1, 2]
它还可以处理不可散列的元素(但是以性能为代价):
>>> list(duplicates([[1], [2], [1], [3], [1]]))
[[1], [1]]
>>> list(unique_everseen(duplicates([[1], [2], [1], [3], [1]])))
[[1]]
这是这里仅有的其他几种方法可以处理的。
我做了一个快速基准测试,其中包含这里提到的大多数(但不是全部)方法。
第一个基准测试仅包含一小部分列表长度,因为某些方法具有 O(n**2)
行为。
在曲线图中,y轴表示时间,因此值越低越好。它还绘制了对数-对数,因此可以更好地可视化各种值:
除去这些O(n**2)
方法,我做了另一个基准测试,列表中最多有500万个元素:
如您所见 iteration_utilities.duplicates
方法比其他任何方法甚至链式方法都快unique_everseen(duplicates(...))
都快也比其他方法快或同样快。
这里要注意的另一件有趣的事情是,对于小名单,熊猫方法非常慢,但可以轻松竞争更长的名单。
但是,由于这些基准测试表明大多数方法的性能大致相同,因此使用哪种方法都无关紧要(除了具有O(n**2)
运行时的三种方法外)。
from iteration_utilities import duplicates, unique_everseen
from collections import Counter
import pandas as pd
import itertools
def georg_counter(it):
return [item for item, count in Counter(it).items() if count > 1]
def georg_set(it):
seen = set()
uniq = []
for x in it:
if x not in seen:
uniq.append(x)
seen.add(x)
def georg_set2(it):
seen = set()
return [x for x in it if x not in seen and not seen.add(x)]
def georg_set3(it):
seen = {}
dupes = []
for x in it:
if x not in seen:
seen[x] = 1
else:
if seen[x] == 1:
dupes.append(x)
seen[x] += 1
def RiteshKumar_count(l):
return set([x for x in l if l.count(x) > 1])
def moooeeeep(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def F1Rumors_implementation(c):
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in zip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def F1Rumors(c):
return list(F1Rumors_implementation(c))
def Edward(a):
d = {}
for elem in a:
if elem in d:
d[elem] += 1
else:
d[elem] = 1
return [x for x, y in d.items() if y > 1]
def wordsmith(a):
return pd.Series(a)[pd.Series(a).duplicated()].values
def NikhilPrabhu(li):
li = li.copy()
for x in set(li):
li.remove(x)
return list(set(li))
def firelynx(a):
vc = pd.Series(a).value_counts()
return vc[vc > 1].index.tolist()
def HenryDev(myList):
newList = set()
for i in myList:
if myList.count(i) >= 2:
newList.add(i)
return list(newList)
def yota(number_lst):
seen_set = set()
duplicate_set = set(x for x in number_lst if x in seen_set or seen_set.add(x))
return seen_set - duplicate_set
def IgorVishnevskiy(l):
s=set(l)
d=[]
for x in l:
if x in s:
s.remove(x)
else:
d.append(x)
return d
def it_duplicates(l):
return list(duplicates(l))
def it_unique_duplicates(l):
return list(unique_everseen(duplicates(l)))
from simple_benchmark import benchmark
import random
funcs = [
georg_counter, georg_set, georg_set2, georg_set3, RiteshKumar_count, moooeeeep,
F1Rumors, Edward, wordsmith, NikhilPrabhu, firelynx,
HenryDev, yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]
args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 12)}
b = benchmark(funcs, args, 'list size')
b.plot()
funcs = [
georg_counter, georg_set, georg_set2, georg_set3, moooeeeep,
F1Rumors, Edward, wordsmith, firelynx,
yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]
args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 20)}
b = benchmark(funcs, args, 'list size')
b.plot()
1这来自我编写的第三方库iteration_utilities
。
我在寻找相关问题时遇到了这个问题-想知道为什么没人提供基于发电机的解决方案?解决此问题的方法是:
>>> print list(getDupes_9([1,2,3,2,1,5,6,5,5,5]))
[1, 2, 5]
我担心可伸缩性,因此测试了几种方法,包括幼稚的项目,这些项目在小列表上都可以很好地工作,但是随着列表变大就可怕地扩展(注意-使用timeit会更好,但这只是说明性的)。
我加入了@moooeeeep进行比较(这是非常快的:如果输入列表是完全随机的,则是最快的),而itertools方法对于大多数已排序的列表来说甚至更快...现在包括@firelynx的pandas方法-慢,但没有很可怕,而且很简单。注意-对于大型的有序列表,sort / tee / zip方法在我的机器上始终是最快的,对于混洗的列表,moooeeeep最快,但是您的里程可能会有所不同。
优点
假设条件
最快的解决方案,一百万个条目:
def getDupes(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
经过测试的方法
import itertools
import time
import random
def getDupes_1(c):
'''naive'''
for i in xrange(0, len(c)):
if c[i] in c[:i]:
yield c[i]
def getDupes_2(c):
'''set len change'''
s = set()
for i in c:
l = len(s)
s.add(i)
if len(s) == l:
yield i
def getDupes_3(c):
'''in dict'''
d = {}
for i in c:
if i in d:
if d[i]:
yield i
d[i] = False
else:
d[i] = True
def getDupes_4(c):
'''in set'''
s,r = set(),set()
for i in c:
if i not in s:
s.add(i)
elif i not in r:
r.add(i)
yield i
def getDupes_5(c):
'''sort/adjacent'''
c = sorted(c)
r = None
for i in xrange(1, len(c)):
if c[i] == c[i - 1]:
if c[i] != r:
yield c[i]
r = c[i]
def getDupes_6(c):
'''sort/groupby'''
def multiple(x):
try:
x.next()
x.next()
return True
except:
return False
for k, g in itertools.ifilter(lambda x: multiple(x[1]), itertools.groupby(sorted(c))):
yield k
def getDupes_7(c):
'''sort/zip'''
c = sorted(c)
r = None
for k, g in zip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_8(c):
'''sort/izip'''
c = sorted(c)
r = None
for k, g in itertools.izip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_9(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def getDupes_a(l):
'''moooeeeep'''
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
for x in l:
if x in seen or seen_add(x):
yield x
def getDupes_b(x):
'''iter*/sorted'''
x = sorted(x)
def _matches():
for k,g in itertools.izip(x[:-1],x[1:]):
if k == g:
yield k
for k, n in itertools.groupby(_matches()):
yield k
def getDupes_c(a):
'''pandas'''
import pandas as pd
vc = pd.Series(a).value_counts()
i = vc[vc > 1].index
for _ in i:
yield _
def hasDupes(fn,c):
try:
if fn(c).next(): return True # Found a dupe
except StopIteration:
pass
return False
def getDupes(fn,c):
return list(fn(c))
STABLE = True
if STABLE:
print 'Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array'
else:
print 'Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array'
for location in (50,250000,500000,750000,999999):
for test in (getDupes_2, getDupes_3, getDupes_4, getDupes_5, getDupes_6,
getDupes_8, getDupes_9, getDupes_a, getDupes_b, getDupes_c):
print 'Test %-15s:%10d - '%(test.__doc__ or test.__name__,location),
deltas = []
for FIRST in (True,False):
for i in xrange(0, 5):
c = range(0,1000000)
if STABLE:
c[0] = location
else:
c.append(location)
random.shuffle(c)
start = time.time()
if FIRST:
print '.' if location == test(c).next() else '!',
else:
print '.' if [location] == list(test(c)) else '!',
deltas.append(time.time()-start)
print ' -- %0.3f '%(sum(deltas)/len(deltas)),
print
print
“所有重复”测试的结果是一致的,在此数组中找到“第一个”重复项,然后是“所有”重复项:
Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array
Test set len change : 500000 - . . . . . -- 0.264 . . . . . -- 0.402
Test in dict : 500000 - . . . . . -- 0.163 . . . . . -- 0.250
Test in set : 500000 - . . . . . -- 0.163 . . . . . -- 0.249
Test sort/adjacent : 500000 - . . . . . -- 0.159 . . . . . -- 0.229
Test sort/groupby : 500000 - . . . . . -- 0.860 . . . . . -- 1.286
Test sort/izip : 500000 - . . . . . -- 0.165 . . . . . -- 0.229
Test sort/tee/izip : 500000 - . . . . . -- 0.145 . . . . . -- 0.206 *
Test moooeeeep : 500000 - . . . . . -- 0.149 . . . . . -- 0.232
Test iter*/sorted : 500000 - . . . . . -- 0.160 . . . . . -- 0.221
Test pandas : 500000 - . . . . . -- 0.493 . . . . . -- 0.499
当列表首先被洗牌时,排序的价格显而易见-效率显着下降,@ moooeeeep方法占主导地位,set和dict方法相似,但表现较差:
Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array
Test set len change : 500000 - . . . . . -- 0.321 . . . . . -- 0.473
Test in dict : 500000 - . . . . . -- 0.285 . . . . . -- 0.360
Test in set : 500000 - . . . . . -- 0.309 . . . . . -- 0.365
Test sort/adjacent : 500000 - . . . . . -- 0.756 . . . . . -- 0.823
Test sort/groupby : 500000 - . . . . . -- 1.459 . . . . . -- 1.896
Test sort/izip : 500000 - . . . . . -- 0.786 . . . . . -- 0.845
Test sort/tee/izip : 500000 - . . . . . -- 0.743 . . . . . -- 0.804
Test moooeeeep : 500000 - . . . . . -- 0.234 . . . . . -- 0.311 *
Test iter*/sorted : 500000 - . . . . . -- 0.776 . . . . . -- 0.840
Test pandas : 500000 - . . . . . -- 0.539 . . . . . -- 0.540
random.shuffle(c)
考虑到这一点。另外,在运行未更改的脚本(完全不同的顺序)时,我也无法复制您的结果,因此也许它也取决于CPU。
collections.Counter是python 2.7中的新功能:
Python 2.5.4 (r254:67916, May 31 2010, 15:03:39)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-46)] on linux2
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print [x for x, y in collections.Counter(a).items() if y > 1]
Type "help", "copyright", "credits" or "license" for more information.
File "", line 1, in
AttributeError: 'module' object has no attribute 'Counter'
>>>
在早期版本中,您可以改用常规dict:
a = [1,2,3,2,1,5,6,5,5,5]
d = {}
for elem in a:
if elem in d:
d[elem] += 1
else:
d[elem] = 1
print [x for x, y in d.items() if y > 1]
这是一个简洁明了的解决方案-
for x in set(li):
li.remove(x)
li = list(set(li))
如果不转换为列表,可能最简单的方法如下所示。 当他们要求不使用布景时,这可能在面试中很有用
a=[1,2,3,3,3]
dup=[]
for each in a:
if each not in dup:
dup.append(each)
print(dup)
=======否则将获得2个单独的唯一值和重复值列表
a=[1,2,3,3,3]
uniques=[]
dups=[]
for each in a:
if each not in uniques:
uniques.append(each)
else:
dups.append(each)
print("Unique values are below:")
print(uniques)
print("Duplicate values are below:")
print(dups)
我们可以使用itertools.groupby
来查找所有具有重复项的项目:
from itertools import groupby
myList = [2, 4, 6, 8, 4, 6, 12]
# when the list is sorted, groupby groups by consecutive elements which are similar
for x, y in groupby(sorted(myList)):
# list(y) returns all the occurences of item x
if len(list(y)) > 1:
print x
输出将是:
4
6
dupes = [x for x, y in groupby(sorted(myList)) if len(list(y)) > 1]
我想在列表中查找重复项的最有效方法是:
from collections import Counter
def duplicates(values):
dups = Counter(values) - Counter(set(values))
return list(dups.keys())
print(duplicates([1,2,3,6,5,2]))
它使用Counter
所有元素和所有唯一元素。将第一个与第二个相减将只保留重复项。
在Python中一次迭代即可找到重复对象的非常简单快捷的方法是:
testList = ['red', 'blue', 'red', 'green', 'blue', 'blue']
testListDict = {}
for item in testList:
try:
testListDict[item] += 1
except:
testListDict[item] = 1
print testListDict
输出如下:
>>> print testListDict
{'blue': 3, 'green': 1, 'red': 2}
这以及我博客中的更多内容http://www.howtoprogramwithpython.com
我要进入这个讨论的很晚了。即使,我也想用一个衬纸来解决这个问题。因为那是Python的魅力。如果我们只想将重复项放入单独的列表(或任何集合)中,我建议按照以下步骤进行操作。说我们有一个重复的列表,我们可以将其称为“目标”
target=[1,2,3,4,4,4,3,5,6,8,4,3]
现在,如果要获取重复项,可以使用一种衬纸,如下所示:
duplicates=dict(set((x,target.count(x)) for x in filter(lambda rec : target.count(rec)>1,target)))
这段代码会将重复的记录作为键并作为值存入字典'duplicates'中。'duplicate'字典如下所示:
{3: 3, 4: 4} #it saying 3 is repeated 3 times and 4 is 4 times
如果只想将所有重复的记录都放在一个列表中,那么它的代码又要短得多:
duplicates=filter(lambda rec : target.count(rec)>1,target)
输出将是:
[3, 4, 4, 4, 3, 4, 3]
这在python 2.7.x +版本中完美工作
其他一些测试。当然可以...
set([x for x in l if l.count(x) > 1])
...太贵了 使用下一个最终方法大约要快500倍(更长的数组会带来更好的结果):
def dups_count_dict(l):
d = {}
for item in l:
if item not in d:
d[item] = 0
d[item] += 1
result_d = {key: val for key, val in d.iteritems() if val > 1}
return result_d.keys()
仅2个循环,没有非常昂贵的l.count()
操作。
例如,下面是比较这些方法的代码。代码如下,这是输出:
dups_count: 13.368s # this is a function which uses l.count()
dups_count_dict: 0.014s # this is a final best function (of the 3 functions)
dups_count_counter: 0.024s # collections.Counter
测试代码:
import numpy as np
from time import time
from collections import Counter
class TimerCounter(object):
def __init__(self):
self._time_sum = 0
def start(self):
self.time = time()
def stop(self):
self._time_sum += time() - self.time
def get_time_sum(self):
return self._time_sum
def dups_count(l):
return set([x for x in l if l.count(x) > 1])
def dups_count_dict(l):
d = {}
for item in l:
if item not in d:
d[item] = 0
d[item] += 1
result_d = {key: val for key, val in d.iteritems() if val > 1}
return result_d.keys()
def dups_counter(l):
counter = Counter(l)
result_d = {key: val for key, val in counter.iteritems() if val > 1}
return result_d.keys()
def gen_array():
np.random.seed(17)
return list(np.random.randint(0, 5000, 10000))
def assert_equal_results(*results):
primary_result = results[0]
other_results = results[1:]
for other_result in other_results:
assert set(primary_result) == set(other_result) and len(primary_result) == len(other_result)
if __name__ == '__main__':
dups_count_time = TimerCounter()
dups_count_dict_time = TimerCounter()
dups_count_counter = TimerCounter()
l = gen_array()
for i in range(3):
dups_count_time.start()
result1 = dups_count(l)
dups_count_time.stop()
dups_count_dict_time.start()
result2 = dups_count_dict(l)
dups_count_dict_time.stop()
dups_count_counter.start()
result3 = dups_counter(l)
dups_count_counter.stop()
assert_equal_results(result1, result2, result3)
print 'dups_count: %.3f' % dups_count_time.get_time_sum()
print 'dups_count_dict: %.3f' % dups_count_dict_time.get_time_sum()
print 'dups_count_counter: %.3f' % dups_count_counter.get_time_sum()
方法1:
list(set([val for idx, val in enumerate(input_list) if val in input_list[idx+1:]]))
说明: [idx的val,如果input_list [idx + 1:]中的val,则enumerate(input_list)中的val]是一个列表推导,如果从当前位置的列表中存在相同的元素,则返回一个元素。
例如:input_list = [42,31,42,31,3,31,31,5,6,6,6,6,6,7,42]
从列表42中的第一个元素开始,索引为0,它会检查input_list [1:]中是否存在元素42(即,从索引1到列表末尾),因为input_list [1:]中存在42 ,它将返回42。
然后转到具有索引1的下一个元素31,并检查input_list [2:]中是否存在元素31(即,从索引2到列表末尾),因为input_list [2:]中存在31,它将返回31。
类似地,它遍历列表中的所有元素,并且仅将重复/重复的元素返回到列表中。
然后,因为我们有重复项,所以在列表中,我们需要从每个重复项中选择一个,即删除重复项中的重复项,然后调用python内置的名为set()的python,它会删除重复项,
然后我们剩下一个集合,而不是列表,因此要从一个集合转换为列表,我们使用typecasting,list(),并将元素集转换为一个列表。
方法2:
def dupes(ilist):
temp_list = [] # initially, empty temporary list
dupe_list = [] # initially, empty duplicate list
for each in ilist:
if each in temp_list: # Found a Duplicate element
if not each in dupe_list: # Avoid duplicate elements in dupe_list
dupe_list.append(each) # Add duplicate element to dupe_list
else:
temp_list.append(each) # Add a new (non-duplicate) to temp_list
return dupe_list
说明: 在这里,我们首先创建两个空列表。然后继续遍历列表的所有元素,以查看它是否存在于temp_list中(最初为空)。如果temp_list中没有它,则使用append方法将其添加到temp_list中。
如果它已经存在于temp_list中,则意味着该列表的当前元素是重复的,因此我们需要使用append方法将其添加到dupe_list中。
raw_list = [1,2,3,3,4,5,6,6,7,2,3,4,2,3,4,1,3,4,]
clean_list = list(set(raw_list))
duplicated_items = []
for item in raw_list:
try:
clean_list.remove(item)
except ValueError:
duplicated_items.append(item)
print(duplicated_items)
# [3, 6, 2, 3, 4, 2, 3, 4, 1, 3, 4]
您基本上可以通过转换为set(clean_list
)来删除重复项,然后对其进行迭代raw_list
,同时从item
清除列表中删除每个重复项以在中出现raw_list
。如果item
未找到,ValueError
则捕获引发的Exception并将其item
添加到duplicated_items
列表中。
如果需要重复项的索引,则只需enumerate
列出并使用索引即可。(for index, item in enumerate(raw_list):
),速度更快,并针对大型列表(如数千个元素以上)进行了优化
使用list.count()
列表中的方法找出给定列表中的重复元素
arr=[]
dup =[]
for i in range(int(input("Enter range of list: "))):
arr.append(int(input("Enter Element in a list: ")))
for i in arr:
if arr.count(i)>1 and i not in dup:
dup.append(i)
print(dup)
list2 = [1, 2, 3, 4, 1, 2, 3]
lset = set()
[(lset.add(item), list2.append(item))
for item in list2 if item not in lset]
print list(lset)
这里有很多答案,但是我认为这是一种相对易读且易于理解的方法:
def get_duplicates(sorted_list):
duplicates = []
last = sorted_list[0]
for x in sorted_list[1:]:
if x == last:
duplicates.append(x)
last = x
return set(duplicates)
笔记:
这是一个快速生成器,它使用字典将每个元素存储为具有布尔值的键,以检查是否已产生重复项。
对于具有所有元素都是可哈希类型的列表:
def gen_dupes(array):
unique = {}
for value in array:
if value in unique and unique[value]:
unique[value] = False
yield value
else:
unique[value] = True
array = [1, 2, 2, 3, 4, 1, 5, 2, 6, 6]
print(list(gen_dupes(array)))
# => [2, 1, 6]
对于可能包含列表的列表:
def gen_dupes(array):
unique = {}
for value in array:
is_list = False
if type(value) is list:
value = tuple(value)
is_list = True
if value in unique and unique[value]:
unique[value] = False
if is_list:
value = list(value)
yield value
else:
unique[value] = True
array = [1, 2, 2, [1, 2], 3, 4, [1, 2], 5, 2, 6, 6]
print(list(gen_dupes(array)))
# => [2, [1, 2], 6]
def removeduplicates(a):
seen = set()
for i in a:
if i not in seen:
seen.add(i)
return seen
print(removeduplicates([1,1,2,2]))
使用toolz时:
from toolz import frequencies, valfilter
a = [1,2,2,3,4,5,4]
>>> list(valfilter(lambda count: count > 1, frequencies(a)).keys())
[2,4]
这是我必须这样做的方法,因为我向自己提出挑战,不要使用其他方法:
def dupList(oldlist):
if type(oldlist)==type((2,2)):
oldlist=[x for x in oldlist]
newList=[]
newList=newList+oldlist
oldlist=oldlist
forbidden=[]
checkPoint=0
for i in range(len(oldlist)):
#print 'start i', i
if i in forbidden:
continue
else:
for j in range(len(oldlist)):
#print 'start j', j
if j in forbidden:
continue
else:
#print 'after Else'
if i!=j:
#print 'i,j', i,j
#print oldlist
#print newList
if oldlist[j]==oldlist[i]:
#print 'oldlist[i],oldlist[j]', oldlist[i],oldlist[j]
forbidden.append(j)
#print 'forbidden', forbidden
del newList[j-checkPoint]
#print newList
checkPoint=checkPoint+1
return newList
因此您的示例工作方式为:
>>>a = [1,2,3,3,3,4,5,6,6,7]
>>>dupList(a)
[1, 2, 3, 4, 5, 6, 7]
duplist = list(set(a))
。