如何在TensorFlow中选择交叉熵损失?
分类问题(例如逻辑回归或多项式逻辑回归)可优化交叉熵损失。通常,交叉熵层跟随softmax层,从而产生概率分布。 在张量流中,至少有十二种不同的交叉熵损失函数: tf.losses.softmax_cross_entropy tf.losses.sparse_softmax_cross_entropy tf.losses.sigmoid_cross_entropy tf.contrib.losses.softmax_cross_entropy tf.contrib.losses.sigmoid_cross_entropy tf.nn.softmax_cross_entropy_with_logits tf.nn.sigmoid_cross_entropy_with_logits ... 哪一个仅适用于二进制分类,哪些适合于多类问题?什么时候应该sigmoid代替使用softmax?如何在sparse功能与别人不同,为什么仅是它softmax? 相关(更多面向数学的讨论):Keras和TensorFlow中所有这些交叉熵损失之间有什么区别?。