1
傅里叶采样实际上如何工作(并解决奇偶校验问题)?
我写的是Umesh Vazirani教授的傅立叶采样视频讲座的第一部分和第二部分。 我从一部分开始: 在Hadamard变换中: |0...0⟩→∑{0,1}n12n/2|x⟩|0...0⟩→∑{0,1}n12n/2|x⟩|0...0\rangle \to \sum_{\{0,1\}^n}\frac{1}{2^{n/2}}|x\rangle |u⟩=|u1...un⟩→∑{0,1}n(−1)u.x2n/2|x⟩(where u.x=u1x1+u2x2+...+unxn)|u⟩=|u1...un⟩→∑{0,1}n(−1)u.x2n/2|x⟩(where u.x=u1x1+u2x2+...+unxn)|u\rangle =|u_1...u_n\rangle \to \sum_{\{0,1\}^n}\frac{(-1)^{u.x}}{2^{n/2}}|x\rangle \quad \text{(where $u.x=u_1x_1+u_2x_2+...+u_nx_n$)} 在傅立叶采样中: |ψ⟩=∑{0,1}nαx|x⟩→∑xαx^|x⟩=|ψ^⟩|ψ⟩=∑{0,1}nαx|x⟩→∑xαx^|x⟩=|ψ^⟩|\psi\rangle=\sum_{\{0,1\}}^{n}\alpha_x|x\rangle \to \sum_{x}\hat{\alpha_x}|x\rangle=|\hat{\psi}\rangle |ψ^⟩|ψ^⟩|\hat{\psi}\ranglexxx|αx^|2|αx^|2|\hat{\alpha_x}|^2 第二部分: 奇偶问题: f:{0,1}n→{0,1}f:{0,1}n→{0,1}f:\{0,1\}^n\to\{0,1\}f(x)=u.xf(x)=u.xf(x)=u.xu1x1+u2x2+...+unxn(mod 2)u1x1+u2x2+...+unxn(mod 2)u_1x_1+u_2x_2+...+u_nx_n (\text{mod 2})u∈{0,1}nu∈{0,1}nu\in\{0,1\}^{n}uuufff uuu 12n/2∑x(−1)f(x)|x⟩12n/2∑x(−1)f(x)|x⟩\frac{1}{2^{n/2}}\sum_{x}(-1)^{f(x)}|x\rangle uuu uuu 他们进一步建立了这样的量子门: |0⟩|0⟩|0\rangle|−⟩|−⟩|-\rangle−⊕f(0...0)−⊕f(0...0)- \oplus f(0...0)⊕⊕\oplus