Questions tagged «coupling»

3
解决牛顿-拉夫森以外的非线性对流扩散系统的方法?
我正在做一个项目,在该项目中,我有两个通过各自的源条件进行adv-diff耦合的域(一个域增加质量,另一个域减去质量)。为简便起见,我正在对它们进行稳态建模。这些方程式是您的标准对流扩散输运方程式,其源项如下所示: ∂c1∂t=0=F1+Q1(c1,c2)∂c2∂t=0=F2+Q2(c1,c2)∂c1∂t=0=F1+Q1(c1,c2)∂c2∂t=0=F2+Q2(c1,c2) \frac{\partial c_1}{\partial t} = 0 = \mathcal{F}_1 + \mathcal{Q}_1(c_1,c_2) \\ \frac{\partial c_2}{\partial t} = 0 = \mathcal{F}_2 + \mathcal{Q}_2(c_1,c_2) 其中是物种扩散和对流通量,而是物种的源项。FiFi\mathcal{F}_iiiiQiQi\mathcal{Q}_iiii 我已经能够使用牛顿-拉夫森方法为我的问题编写求解器,并且已经使用块质量矩阵将两个域完全耦合,即: Fcoupled=[A100A2][c1,ic2,i]xi−[b1(c1,i,c2,i)b2(c1,i,c2,i)]Fcoupled=[A100A2][c1,ic2,i]⏟xi−[b1(c1,i,c2,i)b2(c1,i,c2,i)] F_{coupled} = \left[\begin{array}{c c} A_1 & 0 \\ 0 & A_2 \\ \end{array}\right]\underbrace{ \left[\begin{array}{c} c_{1,i} \\ c_{2,i} \\ \end{array}\right] }_{x_i} - \left[\begin{array}{c} b_1(c_{1,i}, c_{2,i}) \\ b_2(c_{1,i}, …
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.