我正在对200个主题和1000个变量的数据预测进行交叉验证。我对岭回归很感兴趣,因为变量数(我想使用)大于样本数。所以我想使用收缩估计量。以下是示例数据:
#random population of 200 subjects with 1000 variables
M <- matrix(rep(0,200*100),200,1000)
for (i in 1:200) {
set.seed(i)
M[i,] <- ifelse(runif(1000)<0.5,-1,1)
}
rownames(M) <- 1:200
#random yvars
set.seed(1234)
u <- rnorm(1000)
g <- as.vector(crossprod(t(M),u))
h2 <- 0.5
set.seed(234)
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))
myd <- data.frame(y=y, M)
myd[1:10,1:10]
y X1 X2 X3 X4 X5 X6 X7 X8 X9
1 -7.443403 -1 -1 1 1 -1 1 1 1 1
2 -63.731438 -1 1 1 -1 1 1 -1 1 -1
3 -48.705165 -1 1 -1 -1 1 1 -1 -1 1
4 15.883502 1 -1 -1 -1 1 -1 1 1 1
5 19.087484 -1 1 1 -1 -1 1 1 1 1
6 44.066119 1 1 -1 -1 1 1 1 1 1
7 -26.871182 1 -1 -1 -1 -1 1 -1 1 -1
8 -63.120595 -1 -1 1 1 -1 1 -1 1 1
9 48.330940 -1 -1 -1 -1 -1 -1 -1 -1 1
10 -18.433047 1 -1 -1 1 -1 -1 -1 -1 1
我想做以下交叉验证-
(1)将数据分成两部分-使用上半部分作为训练,使用下半部分作为测试
(2)K折交叉验证(例如,建议10折或对我的情况建议其他合适的折数建议)
我可以简单地将数据采样为两个(获取和测试)并使用它们:
# using holdout (50% of the data) cross validation
training.id <- sample(1:nrow(myd), round(nrow(myd)/2,0), replace = FALSE)
test.id <- setdiff(1:nrow(myd), training.id)
myd_train <- myd[training.id,]
myd_test <- myd[test.id,]
我使用lm.ridge
的MASS
[R包。
library(MASS)
out.ridge=lm.ridge(y~., data=myd_train, lambda=seq(0, 100,0.001))
plot(out.ridge)
select(out.ridge)
lam=0.001
abline(v=lam)
out.ridge1 =lm.ridge(y~., data=myd_train, lambda=lam)
hist(out.ridge1$coef)
out.ridge1$ym
hist(out.ridge1$xm)
我有两个问题-
(1)如何预测测试集并计算准确性(预测值与实际值之间的相关性)?
(2)如何执行K折验证?说十倍?
rms
包ols
,calibrate
并validate
具有二次惩罚功能(岭回归)。