10 我读过一些随机森林不能适应的文献。虽然这听起来不错,但似乎实在太好了。射频是否有可能过度拟合? random-forest overfitting — 尖叫猫头鹰 source 5 如果适合,则可能会过度适合。在射频方面,请考虑一下,如果您的森林没有足够的树木(例如,您的森林是一棵使效果明显的树木)会发生什么。问题比这更多,但这是最明显的。 — 马克·克莱森 我刚刚回应了RF上的另一个线程,如果预测变量的数量很大,它很容易过拟合。 — horaceT
7 随机森林可能会过度拟合。我相信这一点。通常的意思是,如果您使用更多的树,则该模型不会过拟合。 ÿ= 升Ô 克(x )+ ϵÿ=升ØG(X)+ϵ — 唐贝 source 随机森林主要是减少方差,它如何过拟合?@Donbeo可能是因为决策树模型在外推中表现不佳。假设,对于异常的预测变量,DT可能给出错误的预测。 — Itachi 2015年 过度拟合的一个明显迹象是剩余方差减少得太多。 那么,您要暗示的是第一句话吗? — ub 在权衡方差的权衡中,当我们尝试减少偏差时,我们会补偿方差。这样,如果x = 80,则y = 100,而x = 81,则y = -100。这太适合了。与具有高方差的Ovefiting不一样。@whuber我以为ovefitting只是因为差异很大。我不明白如何减少残留方差会导致过度拟合。能否请您分享一些论文供我继续阅读。 — Itachi 2 X一世= 1 ,2 ,... ,10X一世=1个,2,…,10ÿ一世ÿ一世ÿ= β0+ β1个x + β2X2+ ⋯ + βķXķÿ=β0+β1个X+β2X2+⋯+βķXķķ = 0 ,1 ,... ,9ķ=0,1个,…,9 1 @Davide您的评论表明,我应该明确指出,我提供的示例不是要陈述有关随机森林的内容,而是要说明方差减少和过度拟合的基本概念。但是您的第一条评论是不透明的,因为它是不相关的(而且,据我所读,它是不正确的):残余方差在此OLS模型序列中很重要,而不是预测方差。确实-回到拟合模型的一般问题-如果减少预测的方差是目标,那么任何始终预测为零的模型都是最优的! — ub