我教经济地理入门课程。为了帮助我的学生更好地了解当代世界经济中的国家类型以及对数据缩减技术的理解,我想构建一项作业,以创建不同国家类型的研究(例如,高收入高收入国家预期寿命长;高收入自然资源出口国的预期寿命中等;德国是第一类,而也门是第二类。这将使用可公开获得的开发计划署数据(如果我记得正确的话,其中包含有关不到200个国家的社会经济数据;抱歉,没有可用的区域数据)。
在进行此分配之前,将有另一个要求他们(使用相同的-主要是区间或比率水平-数据)检查这些相同变量之间的相关性。
我的希望是,他们将首先对不同变量之间的关系类型产生一种直觉(例如,预期寿命与[财富的各种指标]之间的正相关;财富与出口多样性之间的正相关)。然后,当使用数据缩减技术时,构成要素或因素将具有一定的直观意义(例如,构成要素/要素1体现了财富的重要性;构成要素/要素2体现了教育的重要性)。
鉴于这些是第二至四年级的学生,通常他们对分析性思维的了解通常比较有限,那么您建议哪种单一的数据缩减技术最适合第二次作业?这些是人口数据,因此推论统计(p-vlaues等)并不是真正必要的。