我通常处理的数据是,在2个或更多条件下,分别测量了多个个体。我最近一直在使用混合效果建模来评估条件之间差异的证据,individual
并将其建模为随机效果。为了可视化此类建模预测的不确定性,我一直在使用自举法,其中在引导程序的每次迭代中,对个体和条件内观察进行替换抽样,并从中计算新的混合效应模型获得。这对于假定高斯误差的数据效果很好,但是当数据为二项式时,自举可能会花费很长时间,因为每次迭代都必须计算一个计算量相对较高的二项式混合效应模型。
我当时的想法是,我可以使用原始模型中的残差然后使用这些残差代替引导程序中的原始数据,这将使我能够在引导程序的每次迭代中计算一个高斯混合效果模型。将原始数据的二项式模型的原始预测与残差的自举预测相加,得出原始预测的CI为95%。
不过,我最近编码这种做法的一个简单的评价,造型两种情况之间没有区别的,计算的时间比例为95%置信区间未能包括零,而且我发现,上述基于残差,引导过程的产量相当强烈反保守的时间间隔(超过5%的时间排除零)。此外,我然后编码(与以前的链接相同)对该方法的类似评估,该评估应用于原始高斯数据,并且获得了相似的(尽管不是极端的)反保守CI。知道为什么会这样吗?