随机过程是随时间变化的过程,所以它真的是说“时间序列”的一种更好的方法吗?
随机过程是随时间变化的过程,所以它真的是说“时间序列”的一种更好的方法吗?
Answers:
由于评论和答案中出现了许多令人不安的差异,因此让我们参考一些权威机构。
詹姆斯·汉密尔顿甚至都没有定义时间序列,但是他很清楚什么是时间序列:
...这组数仅仅是生成数据的基础随机过程的一个可能结果。事实上,即使我们想象在观察过程中的时间无限周期,到达序列{ ÿ 吨} ∞ 吨= ∞ = { ... ,ÿ - 1,ÿ 0,ÿ 1,ÿ 2,... ,ÿ Ť,ÿ Ť + 1,ÿ Ť + 2,...所述无限序列 { ý 吨} ∞ 吨= ∞将仍然被看作是从一个时间序列处理的单个实现。...
想象的电池的 ...计算机生成的序列{ ý (1 )吨 } ∞ 吨= - ∞,{ ÿ (2 )吨 } ∞ 吨= - ∞,... ,{ ÿ (我)吨 } ∞ 吨= - ∞,并考虑从每个序列中选择与日期t相关的观察值:{ y (1 ) 这将被描述为随机变量Yt的I实现的样本。...
(时间序列分析,第3章。)
因此,“时间序列过程”是由整数t索引的一组随机变量。
在随机微分方程中, BerntØksendal提供了一般随机过程的标准数学定义:
定义2.1.4。 甲随机过程是随机变量的参数化集合 上的概率空间中定义(Ω ,˚F,P),并假设值ř Ñ。
参数空间通常是(如在本书)的halfline [ 0 ,∞ ),但它也可以是一个间隔[ 一,b ],所述非负整数,并且甚至子集ř ñ为Ñ ≥ 1。
将两者放在一起,我们看到时间序列过程是由整数索引的随机过程。
有些人使用“时间序列”来指代时间序列过程的实现(如Wikipedia文章中所述)。我们可以从汉密尔顿的语言中看到,他通过使用“时间序列过程”来合理地将过程与实现区分开来,因此他可以使用“时间序列”来指代实现(甚至是数据)。
让 是一个概率空间。让 成为另一个可测量的空间(例如实数空间) )。讲得有些不精确:
随机过程具有清晰的数学定义。时间序列的概念不太精确,人们使用时间序列来指代两个相关但不同的对象:
让 。让 分别是翻转1和翻转2的结果。
So clearly is a stochastic process. People may also call it a time series since the indexing is by integers. People may also call the realization of , eg. , a time series or time series data.
The difference between a stochastic process and a time series is somewhat like the difference between a cat on a keyboard and an answer on Stack Exchange: Cats on keyboards can produce answers, but cats on keyboards are not answers. Furthermore, not every answer is produced by a cat on a keyboard.
A time series can be understood as a collection of time-value–data-point pairs. A stochastic process on the other hand is a mathematical model or a mathematical description of a distribution of time series¹. Some time series are a realisation of stochastic processes (of either kind). Or, from another point of view: I can use a stochastic process as a model to generate a time series.
Furthermore, time series can also be generated in other ways:
它们可能是观察的结果,因此是现实产生的。虽然我可以将现实建模为随机过程(我也可以说我将现实视为随机过程),但现实并不是随机过程,就像盒子内部不是一组点一样(尽管我们经常在建模环境中考虑两个等效项)。
它们可以通过确定性过程生成。现在,严格来说,我们可以(并且应该应该)定义随机过程和确定性过程,使得后者是前者的特殊情况,但是我们很少使用它,而将确定性过程称为随机过程的特殊情况可能会引起一些混乱-您可以将其与通话进行比较 非线性方程组。
¹如果是离散时间随机过程。连续时间随机过程是功能的分布而不是时间序列。
我感谢所有有关时间序列与随机过程的讨论/评论。这是我对差异的理解:时间序列是一种观察到的现象,记录为一系列数字,这些数字随观察时的时间索引;它很可能是对现实生活现象的一系列观察,例如纽约证券交易所的股价。另一方面,通常将随机过程理解为时间序列的数学表示形式(而不是生产形式)。