我正在使用SVM来预测糖尿病。我为此使用BRFSS数据集。数据集的维度为并且存在偏斜。s在目标变量中的百分比为而s构成其余的。11 %89 %Y
N
我只使用了数据集中15
的136
独立变量。减少数据集的原因之一是当NA
省略包含s的行时具有更多的训练样本。
15
在运行统计方法(例如随机树,逻辑回归)并从结果模型中找出哪些变量很重要之后,才选择这些变量。例如,在运行逻辑回归之后,我们通常p-value
对最重要的变量进行排序。
我进行变量选择的方法正确吗?任何建议都非常欢迎。
以下是我的R
实现。
library(e1071) # Support Vector Machines
#--------------------------------------------------------------------
# read brfss file (huge 135 MB file)
#--------------------------------------------------------------------
y <- read.csv("http://www.hofroe.net/stat579/brfss%2009/brfss-2009-clean.csv")
indicator <- c("DIABETE2", "GENHLTH", "PERSDOC2", "SEX", "FLUSHOT3", "PNEUVAC3",
"X_RFHYPE5", "X_RFCHOL", "RACE2", "X_SMOKER3", "X_AGE_G", "X_BMI4CAT",
"X_INCOMG", "X_RFDRHV3", "X_RFDRHV3", "X_STATE");
target <- "DIABETE2";
diabetes <- y[, indicator];
#--------------------------------------------------------------------
# recode DIABETE2
#--------------------------------------------------------------------
x <- diabetes$DIABETE2;
x[x > 1] <- 'N';
x[x != 'N'] <- 'Y';
diabetes$DIABETE2 <- x;
rm(x);
#--------------------------------------------------------------------
# remove NA
#--------------------------------------------------------------------
x <- na.omit(diabetes);
diabetes <- x;
rm(x);
#--------------------------------------------------------------------
# reproducible research
#--------------------------------------------------------------------
set.seed(1612);
nsamples <- 1000;
sample.diabetes <- diabetes[sample(nrow(diabetes), nsamples), ];
#--------------------------------------------------------------------
# split the dataset into training and test
#--------------------------------------------------------------------
ratio <- 0.7;
train.samples <- ratio*nsamples;
train.rows <- c(sample(nrow(sample.diabetes), trunc(train.samples)));
train.set <- sample.diabetes[train.rows, ];
test.set <- sample.diabetes[-train.rows, ];
train.result <- train.set[ , which(names(train.set) == target)];
test.result <- test.set[ , which(names(test.set) == target)];
#--------------------------------------------------------------------
# SVM
#--------------------------------------------------------------------
formula <- as.formula(factor(DIABETE2) ~ . );
svm.tune <- tune.svm(formula, data = train.set,
gamma = 10^(-3:0), cost = 10^(-1:1));
svm.model <- svm(formula, data = train.set,
kernel = "linear",
gamma = svm.tune$best.parameters$gamma,
cost = svm.tune$best.parameters$cost);
#--------------------------------------------------------------------
# Confusion matrix
#--------------------------------------------------------------------
train.pred <- predict(svm.model, train.set);
test.pred <- predict(svm.model, test.set);
svm.table <- table(pred = test.pred, true = test.result);
print(svm.table);
我运行了(训练=,测试=)样本,因为它在笔记本电脑中速度更快。我得到的测试数据(样本)的混淆矩阵非常糟糕。700 300 300
true
pred N Y
N 262 38
Y 0 0
我需要提高对Y
班级的预测。实际上,Y
即使我的表现不佳,我也需要尽可能地准确N
。任何提高分类准确性的建议将不胜感激。
Y
任何输入。这意味着的时间是正确的。