关于皮尔逊相关系数总体值的两种估计量,我的头脑有些困惑。
A. Fisher(1915)表明,对于二元正态总体,经验是的负偏差估计量,尽管该偏差实际上仅对于小样本量()才是相当可观的。样本在某种意义上低估了,因为它比更接近于。(除非后者为或,否则是无偏的。)已经提出了几种几乎无偏的估计量,最好的估计可能是Olkin和Pratt(1958)Ñ < 30 [R ρ 0 ρ 0 ± 1 - [R更正的:
B.据说在回归中观察到高估了相应的总体R平方。或者,通过简单的回归,就是高估了。基于这一事实,我见过很多文章说,是正相关偏向于,这意味着绝对值:是从更远的比(?是说法正确)。文本说这与通过样本值高估标准偏差参数是同样的问题。有许多公式可以“调整”观察到的使其更接近人口参数Wherry's(1931)- [R 2 ρ 2 - [R[R 0 ρ - [R 2 是最著名的(但不是最好的)。调整后的的根称为收缩:
当前是两个不同的估计量。非常不同的:第一个膨胀,第二放气。如何调和他们?在哪里使用/报告,在另一个地方?
特别是,“收缩”的估计量也(几乎)是无偏的,就像“无偏”的估计一样,但仅在不同的上下文中-在回归的非对称上下文中,这是真的吗?因为,在OLS回归中,我们认为一侧(预测变量)的值是固定的,因此每个样本之间都没有随机误差吗?(要补充一点,回归不需要双变量正态性。)