我有一些预测模型,我想对其性能进行回测(即,获取我的数据集,将其“倒带”到上一个时间点,并查看该模型的预期性能)。
问题是我的某些模型是通过交互过程构建的。例如,按照弗兰克·哈雷尔(Frank Harrell)的回归建模策略中的建议,在一个模型中,我使用了受限制的三次样条来处理特征与响应之间可能的非线性关联。我根据领域知识和关联强度的单变量度量来分配每个样条的自由度。但是,我要允许模型的自由度显然取决于数据集的大小,在进行回测时,数据集的变化很大。如果我不想在每次对模型进行回测时都分别手动选择自由度,那么我还有其他选择吗?
再例如,我目前正在通过发现具有高杠杆作用的点来进行离群值检测。如果我愿意手工进行此操作,则只需查看每个高杠杆数据点,仔细检查数据是否干净,然后过滤掉或手工清理。但这依赖于很多领域知识,因此我不知道如何使过程自动化。
我将不胜感激建议和解决方案,无论是(a)解决模型构建过程中交互部分自动化的一般问题,还是(b)针对这两种情况的具体建议。谢谢!