如何解释0或1的p值?


9

我进行了一项方差分析,例如,性别和年级之间的相互作用比我想知道的男孩和女孩的年级有所不同,但是在很多情况下,我发现(调整后的)p值为0和1。为什么/为什么会这样?似乎不正确...

as.factor(gender)                     1     16    16.2    2.6377  0.104396    
as.factor(grade)                      7  50077  7153.9 1165.4184 < 2.2e-16 ***
as.factor(gender):as.factor(grade)    7    132    18.9    3.0795  0.003056 ** 
Residuals                          7747  47555     6.1                        
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = rating ~ as.factor(gender) * as.factor(grade), data = users_c[users_c$grade %in% 1:8, ])

$`as.factor(gender)`
           diff        lwr        upr     p adj
m-f -0.09135851 -0.2016276 0.01891058 0.1043964

$`as.factor(grade)`
         diff        lwr       upr     p adj
2-1 0.3823566 -0.5454435  1.310157 0.9169296
3-1 1.9796023  1.1649854  2.794219 0.0000000
4-1 3.9558543  3.1534606  4.758248 0.0000000
5-1 5.7843111  4.9829529  6.585669 0.0000000
6-1 7.0752044  6.2708610  7.879548 0.0000000
7-1 8.4868609  7.6776332  9.296089 0.0000000
8-1 9.3867231  8.5626511 10.210795 0.0000000
3-2 1.5972457  1.0395026  2.154989 0.0000000
4-2 3.5734976  3.0337642  4.113231 0.0000000
5-2 5.4019544  4.8637616  5.940147 0.0000000
6-2 6.6928478  6.1502200  7.235476 0.0000000
7-2 8.1045042  7.5546625  8.654346 0.0000000
8-2 9.0043665  8.4329024  9.575831 0.0000000
4-3 1.9762520  1.6694948  2.283009 0.0000000
5-3 3.8047088  3.5006705  4.108747 0.0000000
6-3 5.0956021  4.7837806  5.407424 0.0000000
7-3 6.5072586  6.1830461  6.831471 0.0000000
8-3 7.4071208  7.0474558  7.766786 0.0000000
5-4 1.8284568  1.5588754  2.098038 0.0000000
6-4 3.1193501  2.8410202  3.397680 0.0000000
7-4 4.5310066  4.2388618  4.823151 0.0000000
8-4 5.4308688  5.0998193  5.761918 0.0000000
6-5 1.2908933  1.0155630  1.566224 0.0000000
7-5 2.7025498  2.4132612  2.991838 0.0000000
8-5 3.6024120  3.2738803  3.930944 0.0000000
7-6 1.4116565  1.1141985  1.709114 0.0000000
8-6 2.3115187  1.9757711  2.647266 0.0000000
8-7 0.8998622  0.5525763  1.247148 0.0000000

$`as.factor(gender):as.factor(grade)`
                diff         lwr        upr     p adj
m:1-f:1  0.005917865 -1.77842639  1.7902621 1.0000000
f:2-f:1  0.318074165 -1.28953805  1.9256864 0.9999988
m:2-f:1  0.442924925 -1.11597060  2.0018205 0.9998619
f:3-f:1  1.769000750  0.35262166  3.1853798 0.0020136
m:3-f:1  2.174229216  0.76569156  3.5827669 0.0000147
f:4-f:1  3.738998543  2.34268666  5.1353104 0.0000000
m:4-f:1  4.163719997  2.77146170  5.5559783 0.0000000
f:5-f:1  5.769586591  4.37599400  7.1631792 0.0000000
m:5-f:1  5.816721075  4.42497532  7.2084668 0.0000000
f:6-f:1  7.169439003  5.77317769  8.5657003 0.0000000
m:6-f:1  7.000924045  5.60308216  8.3987659 0.0000000
f:7-f:1  8.330142924  6.92683436  9.7334515 0.0000000
m:7-f:1  8.674488370  7.26930678 10.0796700 0.0000000
f:8-f:1  9.535307293  8.11198164 10.9586329 0.0000000
m:8-f:1  9.251081088  7.82191240 10.6802498 0.0000000
f:2-m:1  0.312156300 -1.12690148  1.7512141 0.9999959
m:2-m:1  0.437007060 -0.94741539  1.8214295 0.9995001
f:3-m:1  1.763082885  0.54136279  2.9848030 0.0000892
m:3-m:1  2.168311350  0.95569081  3.3809319 0.0000001
f:4-m:1  3.733080678  2.53468294  4.9314784 0.0000000
m:4-m:1  4.157802132  2.96412989  5.3514744 0.0000000
f:5-m:1  5.763668726  4.56844048  6.9588970 0.0000000
m:5-m:1  5.810803210  4.61772882  7.0038776 0.0000000
f:6-m:1  7.163521138  5.96518233  8.3618599 0.0000000
m:6-m:1  6.995006180  5.79482611  8.1951862 0.0000000
f:7-m:1  8.324225059  7.11768240  9.5307677 0.0000000
m:7-m:1  8.668570505  7.45984987  9.8772911 0.0000000
f:8-m:1  9.529389428  8.29962271 10.7591561 0.0000000
m:8-m:1  9.245163223  8.00863850 10.4816879 0.0000000
m:2-f:2  0.124850760 -1.02282435  1.2725259 1.0000000
f:3-f:2  1.450926585  0.50586965  2.3959835 0.0000172
m:3-f:2  1.856155050  0.92289131  2.7894188 0.0000000
f:4-f:2  3.420924378  2.50621691  4.3356318 0.0000000
m:4-f:2  3.845645832  2.93713824  4.7541534 0.0000000
f:5-f:2  5.451512425  4.54096139  6.3620635 0.0000000
m:5-f:2  5.498646910  4.59092496  6.4063689 0.0000000
f:6-f:2  6.851364838  5.93673457  7.7659951 0.0000000
m:6-f:2  6.682849880  5.76580854  7.5998912 0.0000000
f:7-f:2  8.012068759  7.08671595  8.9374216 0.0000000
m:7-f:2  8.356414205  7.42822339  9.2846050 0.0000000
f:8-f:2  9.217233128  8.26179669 10.1726696 0.0000000
m:8-f:2  8.933006923  7.96888762  9.8971262 0.0000000
f:3-m:2  1.326075825  0.46649985  2.1856518 0.0000150
m:3-m:2  1.731304290  0.88471145  2.5778971 0.0000000
f:4-m:2  3.296073618  2.46998162  4.1221656 0.0000000
m:4-m:2  3.720795071  2.90157332  4.5400168 0.0000000
f:5-m:2  5.326661665  4.50517434  6.1481490 0.0000000
m:5-m:2  5.373796150  4.55544575  6.1921465 0.0000000
f:6-m:2  6.726514078  5.90050756  7.5525206 0.0000000
m:6-m:2  6.557999120  5.72932364  7.3866746 0.0000000
f:7-m:2  7.887217999  7.04935402  8.7250820 0.0000000
m:7-m:2  8.231563445  7.39056617  9.0725607 0.0000000
f:8-m:2  9.092382368  8.22140761  9.9633571 0.0000000
m:8-m:2  8.808156163  7.92766524  9.6886471 0.0000000
m:3-f:3  0.405228465 -0.13578346  0.9462404 0.4221367
f:4-f:3  1.969997793  1.46166478  2.4783308 0.0000000
m:4-f:3  2.394719246  1.89762897  2.8918095 0.0000000
f:5-f:3  4.000585840  3.49977062  4.5014011 0.0000000
m:5-f:3  4.047720325  3.55206739  4.5433733 0.0000000
f:6-f:3  5.400438253  4.89224417  5.9086323 0.0000000
m:6-f:3  5.231923295  4.71940255  5.7444440 0.0000000
f:7-f:3  6.561142174  6.03389412  7.0883902 0.0000000
m:7-f:3  6.905487620  6.37327442  7.4377008 0.0000000
f:8-f:3  7.766306543  7.18788499  8.3447281 0.0000000
m:8-f:3  7.482080337  6.88942637  8.0747343 0.0000000
f:4-m:3  1.564769328  1.07871270  2.0508260 0.0000000
m:4-m:3  1.989490781  1.51520464  2.4637769 0.0000000
f:5-m:3  3.595357375  3.11716862  4.0735461 0.0000000
m:5-m:3  3.642491860  3.16971239  4.1152713 0.0000000
f:6-m:3  4.995209787  4.50929846  5.4811211 0.0000000
m:6-m:3  4.826694830  4.33626022  5.3171294 0.0000000
f:7-m:3  6.155913709  5.65010831  6.6617191 0.0000000
m:7-m:3  6.500259155  5.98928021  7.0112381 0.0000000
f:8-m:3  7.361078078  6.80213257  7.9200236 0.0000000
m:8-m:3  7.076851872  6.50319055  7.6505132 0.0000000
m:4-f:4  0.424721453 -0.01192015  0.8613631 0.0668946
f:5-f:4  2.030588047  1.58971048  2.4714656 0.0000000
m:5-f:4  2.077722532  1.64271796  2.5127271 0.0000000
f:6-f:4  3.430440460  2.98119847  3.8796825 0.0000000
m:6-f:4  3.261925502  2.80779484  3.7160562 0.0000000
f:7-f:4  4.591144381  4.12045589  5.0618329 0.0000000
m:7-f:4  4.935489827  4.45924616  5.4117335 0.0000000
f:8-f:4  5.796308750  5.26892973  6.3236878 0.0000000
m:8-f:4  5.512082545  4.96913148  6.0550336 0.0000000
f:5-m:4  1.605866594  1.17800058  2.0337326 0.0000000
m:5-m:4  1.653001078  1.23118920  2.0748130 0.0000000
f:6-m:4  3.005719006  2.56923916  3.4421989 0.0000000
m:6-m:4  2.837204048  2.39569420  3.2787139 0.0000000
f:7-m:4  4.166422928  3.70789927  4.6249466 0.0000000
m:7-m:4  4.510768373  4.04654394  4.9749928 0.0000000
f:8-m:4  5.371587296  4.85503631  5.8881383 0.0000000
m:8-m:4  5.087361091  4.55492128  5.6198009 0.0000000
m:5-f:5  0.047134485 -0.37906079  0.4733298 1.0000000
f:6-f:5  1.399852412  0.95913504  1.8405698 0.0000000
m:6-f:5  1.231337454  0.78563790  1.6770370 0.0000000
f:7-f:5  2.560556334  2.09799705  3.0231156 0.0000000
m:7-f:5  2.904901779  2.43669086  3.3731127 0.0000000
f:8-f:5  3.765720703  3.24558412  4.2858573 0.0000000
m:8-f:5  3.481494497  2.94557538  4.0174136 0.0000000
f:6-m:5  1.352717928  0.91787572  1.7875601 0.0000000
m:6-m:5  1.184202970  0.74431204  1.6240939 0.0000000
f:7-m:5  2.513421849  2.05645683  2.9703869 0.0000000
m:7-m:5  2.857767295  2.39508230  3.3204523 0.0000000
f:8-m:5  3.718586218  3.20341827  4.2337542 0.0000000
m:8-m:5  3.434360013  2.90326187  3.9654582 0.0000000
m:6-f:6 -0.168514958 -0.62249009  0.2854602 0.9968060
f:7-f:6  1.160703921  0.69016548  1.6312424 0.0000000
m:7-f:6  1.505049367  1.02895400  1.9811447 0.0000000
f:8-f:6  2.365868290  1.83862318  2.8931134 0.0000000
m:8-f:6  2.081642085  1.53882109  2.6244631 0.0000000
f:7-m:6  1.329218879  0.85401081  1.8044269 0.0000000
m:7-m:6  1.673564325  1.19285330  2.1542753 0.0000000
f:8-m:6  2.534383248  2.00296656  3.0657999 0.0000000
m:8-m:6  2.250157043  1.70328327  2.7970308 0.0000000
m:7-f:7  0.344345446 -0.15203755  0.8407284 0.5648416
f:8-f:7  1.205164369  0.65953016  1.7507986 0.0000000
m:8-f:7  0.920938164  0.36023867  1.4816377 0.0000022
f:8-m:7  0.860818923  0.31038540  1.4112524 0.0000101
m:8-m:7  0.576592718  0.01122178  1.1419637 0.0401330
m:8-f:8 -0.284226205 -0.89329509  0.3248427 0.9688007
r 

7747的剩余自由度很大;您的数据集是否可能每个人都有多个响应?在这种情况下,您可能想要折叠每个人对均值的响应(由ez软件包中的ezANOVA自动完成),或者使用类似混合效果模型的方法,使您能够考虑重复的测量(请参阅ezMixed from ez包)。
Mike Lawrence

我的意思是说“或使用更强大的功能,例如混合效果模型”。另外,对于最新版本的ezMixed代码(它可以有效地评估连续变量(例如坡度)的非线性影响,更不用说通过ezPlot2进行可视化了),请在连接到Internet的同时获取并运行此ezDev函数:raw.github .com / mike-lawrence / ez / master / R / ezDev.R
Mike Lawrence

Answers:


15

所有0和1的意思是它们非常接近0或1。如果仔细观察,您会发现,当调整后的p为1时,效果几乎为0,而当调整后的p为0时,则更接近界限效果很远。因此,本质上没有任何“错误”。现在看看您有多少个有效数字。1或0只是意味着它比该值更接近该值,而不是具有那么多数字的数字所代表的值。随意报告<0.0001或> 0.9999之类的内容。


+1-这些只是任意取整阈值。我真正讨厌基于重要性报告的原因之一。
Fomite 2011年

3
样本量如此之大,因此找到非常小的p值就不足为奇了。我认为这提出了实用性与统计意义的问题,与p值相比,我对置信区间更感兴趣。
格伦(Glen)

@John,您的意思是暗示将p值报告为1.00或1.000会有问题吗?我认为这样做没有错。
mark999 2011年

格伦,我同意...
约翰

mark999,那么您应该以这种方式报告它们。我唯一要解决的问题是此类数字往往被解释为特殊数字。我们都知道,任何值都是估计值,但1.0和0.0可能被认为是特殊的或与统计新手混淆,就像他们对这个提问者一样。然后,引起这个问题的困惑就出现在报告的读者中。
约翰
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.