请提供证明是凸。这里,和分别是标准的普通PDF和CDF。 ∀X>0φΦQ(x)=x2+xϕ(x)Φ(x)∀ X > 0ϕΦ
尝试的步骤
1)计算方法
我已经尝试了演算方法,并为第二个导数提供了一个公式,但是无法证明它是正。如果您需要更多详细信息,请告诉我。∀ X > 0
最后,
∂Q(X)
让 Q(x)=x2+ xϕ(x)Φ (x )
∂ Q (X )∂Q(x)∂X=2 x + x [ -xϕ(x)Φ(x)− {ϕ(x)Φ(x)}2] +ϕ(x)Φ (x )
∂ 2 Q(X)∂Q (x )∂X∣∣∣x = 0=ϕ (0 )Φ (0 )> 0
∂2Q (x )∂X2=2 + x ϕ (x )[ - Φ2(x ) + x2Φ2(x)+3xϕ(x)Φ(x)+2ϕ2(x)Φ3(x)]+ 2 [ - X φ (X )Φ (x )− { ϕ (x )Φ (x )}2]
=2 + ϕ (x )[ x3Φ2(x ) + 3 x2ϕ (x ) Φ (x ) + 2 x ϕ2(X ) - 3 X Φ2(x ) − 2 ϕ (x ) Φ (x )Φ3(x )]
设, ķ(X)=2Φ3(X)+2Xφ3(X)+Φ2(=⎡⎣⎢⎢⎢⎢2 Φ3(x ) + x3Φ2(x ) ϕ (x ) + 3 x2ϕ2(x ) Φ (x ) + 2 x ϕ3(X ) - 3 X Φ2(x ) ϕ (x )− 2 ϕ2(x ) Φ (x )Φ3(x )⎤⎦⎥⎥⎥⎥
K让, K(X ) = 2 Φ3(x ) + 2 x ϕ3(x ) + Φ2(x ) ϕ (x ) x [ x2− 3 ] + ϕ2(x ) Φ (x )[ 3 x2− 2 ]
ķ(0 ) = 14− 12个π> 0
对于
X ≥ 3–√,K(x ) > 0。对于
X ∈ ( 0 ,3–√),
ķ′(x )=6 Φ2(x ) ϕ (x ) + 2 ϕ3(x ) − 6 x2ϕ3(X ) + 2 Φ (X )φ2(x )[ x3− 3 x ]- Φ2(x ) ϕ (x )[ x4− 3 x2] + Φ2(x ) ϕ (x )[ 3 x2− 3 ]− 2 ϕ2(x ) Φ (x )[ 3 x3− 2 x ] + ϕ3(x )[ 3 x2− 2 ] + ϕ2(x ) Φ (x ) 6 x
ķ′(x )=6 Φ2(X ) φ (X ) - 3 Φ2(x ) ϕ (x ) + 2 ϕ3(x ) − 2 ϕ3(X ) + 6 X Φ (X )φ2(X ) - 6 X Φ (X )φ2(x )+ 3 x2Φ2(x ) ϕ (x ) + 3 x2Φ2(x ) ϕ (x )+ 2 x3Φ (x )ϕ2(x ) − 6 x3Φ (x )ϕ2(x ) + 3 x2ϕ3(x ) − 6 x2ϕ3(X ) + 4 X Φ (X )φ2(x )− x4Φ2(x ) ϕ (x )
=3 Φ2(x ) ϕ (x ) + 6 x2Φ2(X ) φ (X ) + 4 X Φ (X )φ2(x ) − 3 x2ϕ3(x ) − x4Φ2(x ) ϕ (x )− 4 x3Φ (x )ϕ2(x )
=ϕ(x)[3Φ2(x)+x{6xΦ2(x)−3xϕ2(x)−x3Φ2(x)+4Φ(x)ϕ(x)[1−x2]}]
2)图形/数值方法
通过绘制如下图,我也能够从数字和视觉上看到它。但是拥有适当的证明会有所帮助。