我在Bayes / MCMC上看到了一篇很好的文章。IT建议您对自变量进行标准化将使MCMC(Metropolis)算法更有效,但也可能会降低(多重)共线性。可以吗?这是我应该做的标准工作吗(抱歉)。
Kruschke,2011年,《进行贝叶斯数据分析》。(美联社)
编辑:例如
> data(longley)
> cor.test(longley$Unemployed, longley$Armed.Forces)
Pearson's product-moment correlation
data: longley$Unemployed and longley$Armed.Forces
t = -0.6745, df = 14, p-value = 0.5109
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.6187113 0.3489766
sample estimates:
cor
-0.1774206
> standardise <- function(x) {(x-mean(x))/sd(x)}
> cor.test(standardise(longley$Unemployed), standardise(longley$Armed.Forces))
Pearson's product-moment correlation
data: standardise(longley$Unemployed) and standardise(longley$Armed.Forces)
t = -0.6745, df = 14, p-value = 0.5109
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.6187113 0.3489766
sample estimates:
cor
-0.1774206
尽管并没有限制矢量的线性相关性,但这并没有降低相关性,因此也没有降低。
这是怎么回事?
[R