阅读了加利特·斯穆利(Galit Shmueli)的“解释或预测”(2010),我为明显的矛盾感到困惑。一共有三个前提
- 基于AIC的与基于BIC的模型选择(第300页的结束-第301页的开始):简而言之,应使用AIC选择用于预测的模型,而应使用BIC选择用于解释的模型。另外(我们不在上面的文章中),我们知道在某些条件下BIC会在候选模型集中选择真实模型。真正的模型是我们在解释模型中寻求的(第293页末)。
- 简单的算法:对于大小为8或更大的样本,AIC将选择比BIC 更大的模型由于AIC与BIC的复杂度惩罚不同,因此满足)。
- 在“真实”模型(即用正确的回归量和正确的函数形式,但不完全估计系数模型)可能不是预测的最佳模式(P 307):回归模型缺少的预测可能是一个更好的预测模型-由于缺少估计变量而导致的偏差可能会因估计不准确而导致方差减少而被抵消。
要点1.和2.表明较大的模型可能比较简约的模型更适合预测。同时,第3点给出了一个相反的例子,其中更简约的模型比较大的模型更适合预测。我感到困惑。
问题:
- 点之间如何出现明显的矛盾{1。和2.}和3.被解释/解决?
- 鉴于第3点,您能否就AIC选择的较大模型实际上比BIC选择的更简约模型更好地进行预测进行直观的解释?