在最近的一篇文章中讨论了依赖p值进行统计推断的缺点,称为“ Matrixx诉Siracusano和Student诉Fisher的审判统计意义”(DOI:10.1111 / j.1740-9713.2011.00511.x), Stephen T. Ziliak反对使用p值。在最后几段中,他说:
数据是我们已经知道并且肯定的一件事。我们实际上想知道的是完全不同的东西:给定我们拥有的数据,假设成立的可能性为真(或至少在实践中有用)。我们想知道两种药物不同的可能性,以及在给定证据的情况下相差多少。显着性检验(基于转置条件的谬误,即Fisher陷入的陷阱)不会,也无法告诉我们这种可能性。幂函数,预期损失函数以及许多其他的决策理论方法和贝叶斯方法都可以从Student和Jeffreys继承而来,这些方法现已广泛可用并且可以免费在线使用。
幂函数,期望损失函数和“其他决策理论和贝叶斯方法”是什么?这些方法是否被广泛使用?它们在R中可用吗?这些新建议方法如何实施?例如,我将如何使用这些方法在数据集中检验我的假设,否则我将使用常规的两样本t检验和p值?