(相当长的帖子,对不起。它包含许多背景信息,请随时跳到底部的问题。)
简介:我正在做一个项目,我们试图确定二进制内生变量对连续结果。我们提出了一个工具,我们坚信它是随机分配的。
数据:数据本身是一个面板结构,其中约34,000个观测值分布在1000个单位和约56个时间段内。对于大约700个(2%)的观测值,取值为1;对于大约3000个(9%),取值为1 。111个(0.33%)观测值在和上均得分为1,如果观测值在上也得分为1,则其在上得分为1的可能性是原来的两倍。
估计:我们通过Stata的ivreg2-过程估计以下2SLS模型:
其中是其他外生变量的向量, 是从第一阶段开始的的预测值,而和是误差项。
结果:一切似乎都运行良好;的估计在第一阶段非常重要,而的估计在第二阶段非常重要。所有符号均符合预期,包括其他外生变量的符号。但是,问题在于(感兴趣的系数)的估计值太大了(或者至少根据我们一直在解释它的方式),这令人难以置信。
范围为2到26,平均值和中位数为17,但是的估计值范围为30到40(取决于规格)!
弱IV:我们的第一个想法是这是由于乐器太弱所致。就是说,它与内生变量之间的关系不大,但事实并非如此。为了检查该仪器的弱点,我们使用Finlay,Magnusson和Schaffer的weakiv-package,因为它提供的测试对于违反假设的情况很健壮(在此处具有相关性,因为我们拥有面板数据并将我们的SE聚类在单位级别)。
根据他们的AR测试,第二阶段系数的95%置信区间的下限在16到29之间(再次取决于规格)。对于所有接近零的值,拒绝概率实际上为1。
有影响的观察结果: 我们尝试估计模型,其中每个单元都被单独删除,每个观察值都被单独删除,并且单元簇被删除。没有真正的改变。
提议的解决方案:有人建议我们不应该以原始度量(0-1)来总结被测量的估计效果,而应该以其预测版本的度量来总结。范围是-0.01至0.1,平均值和中位数约为0.02,SD约为0.018。如果我们通过的一个SD增加来总结的估计效果,那将是 (其他规范给出的结果几乎相同)。这将是更合理的方法(但仍然很重要)。似乎是完美的解决方案。除了我从未见过有人这样做;每个人似乎都只是使用原始内生变量的度量来解释第二阶段系数。
问题:在IV模型中,使用预测变量的度量来总结内生变量增加的估计效果(实际上是LATE)是否正确?在我们的案例中,该指标是预测概率。
注意:即使我们有一个二进制内生变量(使第一阶段成为LPM),我们仍使用2SLS。遵循Angrist&Krueger(2001):“仪器变量与识别:从供需到自然实验”),我们还尝试了Adams,Almeida和Ferreira(2009)中使用的三阶段程序:了解创始人-首席执行官与公司绩效之间的关系”。后一种方法由一个概率模型和一个2SLS组成,产生的系数更小且更合理,但是如果以0-1度量(大约9-10)进行解释,它们仍然很大。手动计算得到的结果与Cerulli ivtreatreg中的probit-2sls-option的结果相同。
etregress/treatreg
吗?