我从事教育游戏的研究,目前的一些项目涉及使用BoardGameGeek(BGG)和VideoGameGeek(VGG)的数据来检查游戏设计元素之间的关系(例如“第二次世界大战”,“涉及掷骰子” )和这些游戏的玩家评分(例如,满分10分)。这些设计元素中的每个元素都与BGG或VGG系统中的标签相对应,因此每个元素本质上都是二分变量。游戏在数据库中为每个存在的标签提供1,为每个不存在的标签提供0。
这些标记有数十种,因此我想使用探索性因子分析(EFA)提出可管理数量的“类型”,以捕获游戏设计中的模式。咨询几个来源,据我所知,因为我有工作二元变量,我应该使用polychoric相关(四项,特别是在这里),而不是皮尔森用我的因素,即将到来的时候(也有其他的选择,喜欢的潜在特质分析-那些那里,但这是我现在正在探索的那个)。
出于好奇,我想出了两套因素,一套使用Pearson相关,另一套使用多色相关(每次使用相同数量的因素)。我的问题是,使用Pearson相关性计算出的因子比使用多色相关性计算出的因子更有意义并且更易于解释。换句话说,来自第一组因素的“类型”具有直觉意义,并且与我对游戏设计的理解相一致。第二组因素则不是这样。
一方面,我想确保我符合正在使用的测试的假设,即使这样做会使我的结果不太美观。另一方面,我认为因素分析和(更广泛的)模型构建的目标的一部分是想出一些有用的东西,而当我“违反规则”时,就会出现更多有用的信息。对有用模型的需求是否足以超过违反该检验假设的条件?使用Pearson相关而不是多选相关的结果到底是什么?