在学习Gradient Boosting时,我还没有听说过该方法用于构建和集成模型的“弱分类器”的属性方面的任何限制。但是,我无法想象使用线性回归的GB应用程序,实际上,当我执行一些测试时-它不起作用。我正在用残差平方和的梯度测试最标准的方法,然后将后续模型相加。
明显的问题是,第一个模型的残差以这样的方式填充:实际上再也没有适合的回归线。我的另一个观察结果是,后续线性回归模型的总和也可以表示为单个回归模型(加上所有截距和相应的系数),因此我无法想象这会如何改善该模型。最后的观察结果是线性回归(最典型的方法)使用残差平方和作为损失函数-GB也在使用这种方法。
我还考虑过降低学习率,或者在每次迭代中仅使用预测变量的子集,但是最终还是可以将其总结为单个模型表示,因此我认为这不会带来任何改善。
我在这里想念什么?线性回归在某种程度上不适用于Gradient Boosting吗?是因为线性回归使用残差平方和作为损失函数吗?对弱预测变量是否有任何特殊限制,以便可以将其应用于梯度提升?