让我们总结随机变量,流X 我我我d 〜 ù(0 ,1 )
X 1 + X 2 + ⋯ + X Y > 1。
为什么Y的均值
E(Y )= e = 10 !+11 !+12 !+13 !+…
让我们总结随机变量,流X 我我我d 〜 ù(0 ,1 )
X 1 + X 2 + ⋯ + X Y > 1。
为什么Y的均值
E(Y )= e = 10 !+11 !+12 !+13 !+…
Answers:
初步观察:Y
概率密度函数p Ÿ(ñ )
累积分布˚F ý(Ñ )= 镨(Ý ≤ Ñ )
第二个观察结果:Y
显然Ÿ
È(Ý )= ∞ Σ ñ = 0 ˉ ˚F ý(Ñ )= ∞ Σ ñ = 0( 1 - ˚F ý(Ñ ))
事实上镨(Ý = 0 )
至于后来条款,如果˚F ÿ(Ñ )
第三次观察:n-
所述Ñ单纯形余心目中占据下的体积标准单元(ñ - 1 )单纯形的所有阳性orthant的ř Ñ:它是的凸包(Ñ + 1 )的顶点,尤其是起源加该单元的顶点(ñ - 1 )在单纯形(1 ,0 ,0 ,... ),(0 ,1 ,0 ,...
例如,2-单纯形与上面X 1 + X 2 ≤ 1具有区域1
用于证明通过直接评估为所描述的事件的概率的一体前进ˉ ˚F ý(Ñ ),并链接到其他两个参数,请参阅此数学SE线程。相关的线程可能也很有趣:e和n个单纯形体积之和之间是否存在关系?
修复Ñ ≥ 1。设U i = X 1 + X 2 + ⋯ + X i
给定序列U 1,U 2,… ,U n,我们可以恢复序列X 1,X 2,… ,X n。要了解操作方法,请注意
U 1 = X 1,因为两者都在 0到 1之间。
如果ü 我+ 1 ≥ ü 我,则X 我+ 1 = Ü 我+ 1 - ü 我。
Otherwise, Ui+Xi+1>1
There is exactly one sequence in which the Ui
Pr(Y>n)=Pr(X1+X2+⋯+Xn≤1)=Pr(X1+X2+⋯+Xn<1)=1n!.
This yields the probabilities for the entire distribution of Y
Pr(Y=n)=Pr(Y>n−1)−Pr(Y>n)=1(n−1)!−1n!=n−1n!.
Moreover,
E(Y)=∞∑n=0Pr(Y>n)=∞∑n=01n!=e,
QED.
In Sheldon Ross' A First Course in Probability there is an easy to follow proof:
Modifying a bit the notation in the OP, Uiiid∼U(0,1)
Y=min{n:n∑i=1Ui>1}
If instead we looked for:
Y(u)=min{n:n∑i=1Ui>u}
We can apply the following general properties for continuous variables:
E[X]=E[E[X|Y]]=∫∞−∞E[X|Y=y]fY(y)dy
to express f(u)
f(u)=∫10E[Y(u)|U1=x]dx
If the U1=x
f(u)=1+∫x0f(u−x)dx
If we differentiate both sides of this equation, we can see that:
f′(u)=f(u)⟹f′(u)f(u)=1
with one last integration we get:
log[f(u)]=u+c⟹f(u)=keu
We know that the expectation that drawing a sample from the uniform distribution and surpassing 0